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A. Lemmas

Lemma 1. There exists a unique neutral rumor z0 such that q

⇤
m(z0) = q

⇤
ps(z0) = q

⇤
ms

and q

⇤
ps(z) > q

⇤
ms for all z < z0 and q

⇤
ps(z) < q

⇤
ms for all z > z0.

Proof. Since (q⇤ms, x⇤ms) satisfies the indifference condition of the “pure noise model,”
we have

F
✓

q

⇤
ms � x⇤ms

sx

◆
= c.

By definition, when z = z0, (q⇤ms, x⇤ms) also satisfies the indifference condition of the
“public signal model,” we have

F

 
q

⇤
ms � (bx⇤ms + (1 � b)z0)p

bsx

!
= c.

The posterior belief P(·|z0, x) in the “mute model” is just the weighted average of the
left-hand-side of the two equations above. Hence P(q⇤ms|z0, x⇤ms) = c. Furthermore,
(q⇤ms, x⇤ms) satisfies the critical mass condition of the “mute model.” Therefore, it is an
equilibrium for the “mute model” when z = z0. Since q

⇤
ps(z) is strictly decreasing, the

second part of this lemma is implied.

Lemma 2. At z = z0 and q̂ = q

0, the cutoff types who are indifferent between attacking
and not attacking satisfy:

∂x̂I
∂z

<
∂x̂m
∂z

<
∂x̂U
∂z

< 0,

∂x̂I

∂q̂

>
∂x̂m

∂q̂

>
∂x̂U

∂q̂

> 0.

Proof. We proceed in a number of steps.

Claim 1. Pr[yi = 1|z, xi] is increasing in xi for xi < z and decreasing in xi for xi > z.
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The derivative of Pr[yi = 1|z, xi] with respect to xi is:

� w
bp

1 + bsx

"
f

 
x(z)� Xip

1 + bsx

!
� f

 
x(z)� Xip

1 + bsx

!#

� (1 � w)
1p
2sx


f

✓
x(z)� xip

2sx

◆
� f

✓
x(z)� xip

2sx

◆�
+

∂w
∂xi

F(b, z, xi),

where

F(b, z, xi) = F

 
x(z)� Xip

1 + bsx

!
� F

 
x(z)� Xip

1 + bsx

!
� F

✓
x(z)� xip

2sx

◆
+ F

✓
x(z)� xip

2sx

◆
.

It is straightforward to show that F(b, z, xi) is decreasing in b, with F(1, z, xi) = 0.
Thus, F(b, z, xi) > 0 for b < 1. Since x(z) + x(z) = 2z, the first two terms are positive
if xi < z. Since ∂w/∂xi > 0 for xi < z, the third term is positive as well. Therefore, the
derivative is positive. If xi > z, then the opposite is true.

Claim 2. When c = 0.5,

∂x̂I(q0, z0)
∂q̂

=
�p(q0|z0, x0)

R
q

0

�•
J(t,z0)
J(q0,z0)

∂p(t|z0,x0)
∂x dt

,
∂x̂U(q0, z0)

∂q̂

=
�p(q0|z0, x0)

R
q

0

�•
1�J(t,z0)
1�J(q0,z0)

∂p(t|z0,x0)
∂x dt

.

When c = 0.5, the value of x0 that satisfies P(q0|z0, x0, 1) = c is x0 = z0. By Claim 1,
∂ Pr[yi = 1|z0, x0]/∂xi = 0 at this point. Since

P(q0|z0, x0, 1) =

R
q

0

�• J(t, z0)p(t|z0, x0)dt
Pr[yi = 1|z0, x0]

,

the claim follows by the implicit function theorem. The expression for ∂xU/∂q̂ is de-
rived in a similar fashion.

Claim 3. When c = 0.5,

Z
q

0

�•

J(t, z0)
J(q0, z0)

∂p(t|z0, x0)
∂x

dt >
Z

q

0

�•

∂p(t|z0, x0)
∂x

dt >
Z

q

0

�•

1 � J(t, z0)
1 � J(q0, z0)

∂p(t|z0, x0)
∂x

dt.

When c = 0.5, q

0 = z0 = x0. Therefore, J(t, z0) < J(q0, z0) for all t < q

0. Moreover,

∂p(t|z0, x0)
∂x

= �w
1
s

2
x

f

0
I � (1 � w)

1
s

2
x

f

0
U +

∂w
∂x

 
1p
bsx

fI �
1
sx

fU

!
,

where the subscript I indicates that the corresponding function is evaluated at (t �
X0)/(

p
bsx). Since t < q

0 = X0, f

0
I is positive. Likewise, the subscript U indicates
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that the corresponding function is evaluated at (t � x0)/sx. Since t < q

0 = x0, f

0
U is

also positive. Finally, since ∂w/∂x = 0 at x0 = z0, we have ∂p(t|z0, x0)/∂x < 0. Thus,
the first inequality of the claim follows. The second inequality can be established in a
similar way.

Since x0 satisfies the indifference condition P(q0|z0, x0) = c of the “mute model,” by
the implicit function theorem we obtain:

∂x̂m(q0, z0)
∂q̂

=
�p(q0|z0, x0)
R

q

0

�•
∂p(q|z0,x0)

∂x dq

=
�p(q0|z0, x0)

Px
.

The ranking of the partial derivatives in the lemma then follows by Claims 2 and 3.
Finally, since P(q̂|z, x, 0) increases in q̂ and decreases in x, we have ∂x̂U/∂q̂ > 0. This
proves the second inequality in the lemma. The first inequality then follows immedi-
ately from Lemma 6, which shows that ∂x̂/∂z = 1 � ∂x̂/∂q̂.

Lemma 3. limz!�• x⇤I (z) = +• and limz!• x⇤I (z) = �•.

Proof. We only prove the first part of this lemma; the proof of the second part is similar.

Claim 1. (a) limz!�• x(z)/z = 1 + sI/sU; and (b) limz!�• x(z)/z = 1 � sI/sU.

Recall that x(z) is the larger solution to w(z, x) = d. Solving this equation gives

x(z) = z +

s
s

2
I

s

2
U
(z � s)2 � 2s

2
I log

sId(1 � a)
sUa(1 � d)

⌘ z + k(z).

Since limz!• k(z)/z = sI/sU, this establishes part (a). Part (b) also follows because
x(z) = z � k(z).

Claim 2. For any finite q̂ and any x⇤I 6= •, limz!�• P(q̂|z, x⇤I , yi = 1, z ⇠ I) = 1.

Let limz!�• x⇤I (z)/z = g � 0. Consider the complementary probability,

Pr[q > q̂|z, x⇤I , yi = 1, z ⇠ I] =

R •
q̂

J(t, z) 1p
bsx

f

✓
t�z�b(x⇤I �z)p

bsx

◆
dt

F
✓

x(z)�z�b(x⇤I �z)p
1+bsx

◆
� F

✓
x(z)�z�b(x⇤I �z)p

1+bsx

◆ .

Since J(t, z) is decreasing in t for t > z, we have

lim
z!�•

Pr[q > q̂|z, x⇤I , yi = 1, z ⇠ I]  lim
z!�•

J(q̂, z)
✓

1 � F
✓

q̂�z�b(x⇤I �z)p
bsx

◆◆

F
✓

x(z)�z�b(x⇤I �z)p
1+bsx

◆
� F

✓
x(z)�z�b(x⇤I �z)p

1+bsx

◆ .
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Note that limz!�•(x(z)� z � b(x � z))/z = b(1 � g)� sI/sU. There are two cases
to consider. If b(1� g)� sI/sU  0, then the denominator of the term above does not
vanish as z goes to minus infinity, while the numerator goes to zero. So the limit of the
ratio is 0. If b(1 � g) � sI/sU > 0 then both denominator and numerator vanishes.
However, J(q̂, z) goes to 0 at the rate at which (x(z) � q̂)/sx goes to minus infinity,
which is equal to (1 � sI/sU)/sx. The denominator goes to 0 at the rate at which
(x(z)� z � b(x � z))/(

p
1 + bsx) goes to minus infinity, which is

b(1 � g)� sI/sUp
1 + bsx

<
1 � sI/sU

sx
.

Hence, in both cases,

lim
z!�•

J(q̂, z)

F
✓

x(z)�z�b(x⇤I �z)p
1+bsx

◆
� F

✓
x(z)�z�b(x⇤I �z)p

1+bsx

◆ = 0.

This implies that limz!�• P(q̂|z, x⇤I , yi = 1, z ⇠ I) = 1.

Claim 3. For any finite q̂ and any x⇤I 6= •, limz!�• P(q̂|x⇤I , yi = 1, z ⇠ U) = 1.

Let limz!�• x⇤I (z)/z = g � 0. Consider limit of the complementary probability,

lim
z!�•

Pr[q > q̂|x⇤I , yi = 1, z ⇠ U] = lim
z!•

R •
q̂

J(t, z) 1
sx

f

⇣
t�x⇤I

sx

⌘
dt

F
⇣

x(z)�x⇤Ip
2sx

⌘
� F

⇣
x(z)�x⇤Ip

2sx

⌘

 lim
z!�•

J(q̂, z)
⇣

1 � F
⇣

q̂�x⇤I
sx

⌘⌘

F
⇣

x(z)�x⇤Ip
2sx

⌘
� F

⇣
x(z)�x⇤Ip

2sx

⌘ .

The term J(q̂, z) goes to 0 at the rate (1�sI/sU)/sx. If 1�sI/sU > g, the denominator
goes to 0 at the rate

1 � g � sI/sUp
2sx

<
1 � sI/sU

sx
.

Therefore the ratio goes to 0 as z goes to minus infinity. If 1 � sI/sU  g, the denomi-
nator does not vanish. So the ratio again goes to zero.

To prove the lemma, note that P(q̂|z, x⇤I , 1) is just a weighted average of P(q̂|z, x⇤I , yi =

1, z ⇠ I) and P(q̂|z, x⇤I , yi = 1, z ⇠ U). By Claims 2 and 3, we must have

lim
z!�•

P(q̂|z, x⇤I , 1) = 1 > c,

for any finite q̂ and any x⇤I 6= •. We know from part (a) of Proposition 2 that the
limit of q

⇤(z) is finite. Therefore the indifference condition (8) cannot hold unless
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limz!�• x⇤I (z) = •.

Lemma 4. For any z, there is a unique q̂

⇤ such that, for a given x,

P(q̂⇤|z, x, 1) = P(q̂⇤|z, x, 0).

Moreover, the value of such q̂

⇤ monotonically decreases in x.

Proof. A pair (q̂, x) solves P(q̂|z, x, 1) = P(q̂|z, x, 0) if and only if it solves P(q̂|z, x, 1) =
P(q̂|z, x). Therefore, we define

G(q̂, x) ⌘ P(q̂|z, x, 1)� P(q̂|z, x) =
Z

q̂

�•

✓
J(t, z)R

J(t, z)p(t|z, x)dt
� 1
◆

p(t|z, x)dt.

Since J(t, z) is strictly unimodal, there exist q1(x) and q2(x) such that

J(t, z)R
J(t, z)p(t|z, x)dt

� 1

8
<

:
< 0 if t < q1(x) or t > q2(x);

> 0 if q1(x) < t < q2(x).

Thus, G(q̂, x) is negative and decreasing from 0 if q̂ < q1(x); increasing from q1 < q̂ <

q2; and positive and decreasing towards 0 if q̂ > q2(x). Since G(q̂, x) is continuous,
there exists a unique q̂

⇤(x) 2 (q1(x), q2(x)) such that G(q̂⇤(x), x) = 0.

To show that such q̂

⇤(x) is monotone decreasing in x, let xL < xH and suppose
z  xL. We have:

G(q̂⇤(xL), xH) =
Z

q̂

⇤(xL)

�•

✓
J(t, z)R

J(t, z)p(t|z, xH)dt
� 1
◆

p(t|z, xH)dt

>
Z

q̂

⇤(xL)

�•

✓
J(t, z)R

J(t, z)p(t|z, xL)dt
� 1
◆

p(t|z, xH)dt

>
Z

q1(xL)

�•

✓
J(t, z)R

J(t, z)p(t|z, xL)dt
� 1
◆

p(t|z, xL)
p(q1(xL)|z, xH)
p(q1(xL)|z, xL)

dt

+
Z

q̂

⇤(xL)

q1(xL)

✓
J(t, z)R

J(t, z)p(t|z, xL)dt
� 1
◆

p(t|z, xL)
p(q1(xL)|z, xH)
p(q1(xL)|z, xL)

dt

= 0.

The first inequality follows because
R •
�• J(t, z)p(t|z, x)dt is unimodal in x and attains

the maximum at x = z. This fact is established in Lemma 2 (see Claim 1). The second
inequality holds, because p(q|z, xH)/p(q|z, xL) is increasing in q for any given xH >
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xL. To see this, we expand the posterior belief,

p(q|z, x) =
p(q|x)p(z|x, q)

p(z|x) .

Therefore, for any given xH > xL, we obtain:

p(q|z, xH)
p(q|z, xL)

=
p(q|xH)
p(q|xL)

p(z|xL)
p(z|xH)

.

It is obvious that p(q|xH)/p(q|xL) is increasing in q.

The fact that G(q̂⇤(xL), xH) > 0 and the single-crossing property of G(·, xH) implies
that q̂

⇤(xH) < q̂

⇤(xL). In other words, if z  xL, q̂

⇤ monotonically decreases in x.
Similarly, for xL  z, we show that �G(q̂⇤(xH), xL) > 0, which again implies that
q̂

⇤(xH) < q̂

⇤(xL).

Lemma 5. For any z, there exists a unique pair
�
q̂, x
�

such that

P(q̂|z, x, 1) = P(q̂|z, x, 0) = c.

Proof. It is equivalent to show that, for any z, there exists a unique pair (q̂, x) such
that P(q̂|z, x, 1) = c and G(q̂, x; z) = 0, where G is defined in the proof of Lemma 4
above. P(q̂|z, x, 1) monotonically decreases in x and increases in q̂. Therefore, for any
x, there exists a unique q̂ such that P(q̂|z, x, 1) = c and such value of q̂ monotonically
increases in x. According to Lemma 4, for any given x, there exists a unique q̂ such
that G(q̂, x; z) = 0 and such value of q̂ decreases in x. Thus the value of q̂ (and hence
x) that satisfies both conditions must be unique.

Lemma 6. At z = z0 and q̂ = q

0,

∂x̂I
∂z

+
∂x̂I

∂q̂

=
∂x̂m
∂z

+
∂x̂m

∂q̂

=
∂x̂U
∂z

+
∂x̂U

∂q̂

= 1
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Proof. Write the relevant indifference conditions in the following form:

tm(q̂, z, x) ⌘ P(q̂|z, x)� c = 0,

tI(q̂, z, x) ⌘
Z

q̂

�•
J(t, z)p(t|z, x)dt � c Pr[yi = 1|z, x] = 0,

tU(q̂, z, x) ⌘
Z

q̂

�•
(1 � J(t, z))p(t|z, x)dt � c(1 � Pr[yi = 1|z, x]) = 0.

Claim 1. At z = z0 and q̂ = q

0, ∂x̂m/∂z + ∂x̂m/∂q̂ = 1.

In the “mute model,” we have

∂tm(q0, z0, x0)
∂z

= �w
1 � bp

bsx
f

 
q

0 � X0
p

bsx

!
+

∂w
∂z

 
F

 
q

0 � X0
p

bsx

!
� F

✓
q

0 � x0

sx

◆!

= �w
1 � bp

bsx
f

 
q

0 � X0
p

bsx

!
,

where the last equality follows because X0 = bx0 + (1 � b)z0 = x0. Similarly,

∂tm(q0, z0, x0)
∂x

= �w
bp
bsx

f

 
q

0 � X0
p

bsx

!
� (1 � w)

1
sx

f

✓
q

0 � x0

sx

◆

It is straightforward to see that at the point (q0, z0, x0),

∂tm
∂z

+
∂tm
∂x

= �∂tm

∂q̂

.

The claim then follows by the implicit function theorem.

Claim 2. At z = z0 and q̂ = q

0,

∂tI
∂x

= J(q0, z0)
∂P(q0|z0, x0)

∂x
� D,

∂tU
∂x

= (1 � J(q0, z0))
∂P(q0|z0, x0)

∂x
+ D;

with D < 0.

First, note that ∂ Pr[yi = 1|z0, x0]/∂x = 0 by Claim 1 in the proof of Lemma 2.
Rewrite tI using integration-by-parts and then take derivative with respect to x to get

D =
Z

q

0

�•

∂J(t, z0)
∂t

∂P(t|z0, x0)
∂x

dt.

This term is negative because ∂J/∂t > 0 for t < q

0 and ∂P/∂x < 0. The derivation of
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∂tU/∂x follows the same lines.

Claim 3. At z = z0 and q̂ = q

0,

∂tI
∂z

= J(q0, z0)
∂P(q0|z0, x0)

∂z
+ Q,

∂tU
∂z

= (1 � J(q0, z0))
∂P(q0|z0, x0)

∂z
� Q.

where Q = D.

Let T1 = Pr[yi = 1, q  q

0|z0, x0, z ⇠ I], T2 = Pr[yi = 1|z0, x0, z ⇠ I], T3 = Pr[yi =

1, q  q

0|z0, x0, z ⇠ U], and T4 = Pr[yi = 1|z0, x0, z ⇠ U]. We can write

tI(q̂, z, x) = w(T1 � cT2) + (1 � w)(T3 � cT4).

Therefore,
∂tI(q0, z0, x0)

∂z
= w

∂

∂z
(T1 � cT2) + (1 � w)

∂

∂z
(T3 � cT4),

with a term involving ∂w/∂z that vanishes because T1 � cT2 = T3 � cT4 = 0 when
c = 0.5. Consider first the derivative of the term T1 � cT2:

∂

∂z
(T1 � cT2) =

Z
q

0

�•
J(t, z0)

1p
bsx

∂f

✓
t�X0p

bsx

◆

∂z
dt +

Z
q

0

�•

∂J(t, z0)
∂z

1p
bsx

f

 
t � X0
p

bsx

!
dt

� c

"
dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!
�

�dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!#
.

Use integration-by-parts on the first term to get

∂

∂z
(T1 � cT2) =

1
w

J(q0, z0)
∂P(q0|z0, x0)

∂z

+
Z

q

0

�•

✓
(1 � b)

∂J(t, z0)
∂t

+
∂J(t, z0)

∂z

◆
1p
bsx

f

 
t � X0
p

bsx

!
dt

� c

"
dk

dz + b

p
1 + bsx

f

 
x(z)� X0
p

1 + bsx

!
�

�dk

dz + b

p
1 + bsx

f

 
x(z)� X0
p

1 + bsx

!#
.
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From this, we obtain:

∂

∂z
(T1 � cT2) =

1
w

J(q0, z0)
∂P(q0|z0, x0)

∂z

+
dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!
F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A

�
�dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!
F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A

� c

"
dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!
�

�dk

dz + b

p
1 + bsx

f

 
x(z0)� X0
p

1 + bsx

!#

=
1
w

J(q0, z0)
∂P(q0|z0, x0)

∂z

+
bp

1 + bsx
f

 
x(z0)� X0
p

1 + bsx

!2

4F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A� F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A

3

5 ,

where the second equality uses the fact that z0 = q

0 = X0 and c = 0.5. Similarly,

∂

∂z
(T3 � cT4) =

1p
2sx

f

✓
x(z0)� x0p

2sx

◆2

4F

0

@q

0 � x0+x(z0)
2q

1
2 sx

1

A� F

0

@q

0 � x0+x(z0)
2q

1
2 sx

1

A

3

5 .

Combining the two terms, and using the definition of Q in the statement of the claim,
we obtain:

Q =
wbp

1 + bsx
f

 
x(z0)� X0
p

1 + bsx

!2

4F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A� F

0

@
q

0 � X0+bx(z0)
1+bq

b

1+b

sx

1

A

3

5

+
(1 � w)p

2sx
f

✓
x(z0)� x0p

2sx

◆2

4F

0

@q

0 � x0+x(z0)
2q

1
2 sx

1

A� F

0

@q

0 � x0+x(z0)
2q

1
2 sx

1

A

3

5 = D.

Thus, ∂tI/∂z = J∂P/∂z + D. Moreover, since tU = tm � tI , this implies ∂tU/∂z =

(1 � J)∂P/∂z � D.

Claims 2 and 3 imply that

∂tI
∂x

+
∂tI
∂z

= J
✓

∂P(q0|z0, x0)
∂x

+
∂P(q0|z0, x0)

∂z

◆
.

From Claim 1, the term in parenthesis is equal to �p(q0|z0, x0). Therefore, ∂tI/∂x +

∂tI/∂z = �∂tI/∂q̂. By the implicit function theorem, the lemma follows.
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Lemma 7. When z goes to • or �•, ∂x̂m/∂q̂ < 1.

Proof. Since x̂m(q̂, z) solves the indifference condition P(q̂|x̂m, z) = c, we have ∂x̂m/∂q̂ =

�p/Px < 1 if and only if p + Px < 0. Expand this expression to obtain:

p + Px =
wp
bsx

f

 
q̂ � X̂mp

bsx

!
+

1 � w
sx

f

 
q̂ � X̂m

sx

!
� �wbp

bsx
f

 
q̂ � X̂mp

bsx

!

� 1 � w
sx

f

 
q̂ � X̂m

sx

!
+

∂w
∂x

"
F

 
q̂ � X̂mp

bsx

!
� F

 
q̂ � X̂m

sx

!#

=
w(1 � b)p

bsx
f

 
q̂ � X̂mp

bsx

!
+

∂w
∂x

"
F

 
q̂ � X̂mp

bsx

!
� F

 
q̂ � X̂m

sx

!#

= w

(
1 � bp

bsx
f

 
q̂ � X̂mp

bsx

!
+ (1 � w)

✓
z � X̂m

sx

◆"
F

 
q̂ � X̂mp

bsx

!
� F

 
q̂ � X̂m

sx

!#)
.

When z ! +•, the expression in curly brackets goes to

�(1 � w)

✓
z � X̂m

sx

◆
F

 
q̂ � X̂m

sx

!
< 0.

Similarly, when z ! �•, it goes to

(1 � w)

✓
z � X̂m

sx

◆ 
1 � F

 
q̂ � X̂m

sx

!!
< 0.

Lemma 8. For z sufficiently large,

�
1 � J(q̂, z)

�
F

 
x̂U(q̂, z)� q̂

sx

!
> F

 
x̂m(q̂, z)� q̂

sx

!
.

For z sufficiently negative, this inequality is reversed.

Proof. We establish this lemma in several steps.

Claim 1. For z sufficiently large,

lim
z!•

P
�
q̂|z, x, 0

�
� P

�
q̂|z, x

�

J
�
q̂, z
� = •.

10



Denote J = Pr[y = 1|z, x]. We have:

J = w

 
F

 
x(z)� Xp

1 + bsx

!
� F

 
x(z)� Xp

1 + bsx

!!
+(1�w)

✓
F
✓

x(z)� xp
2sx

◆
� F

✓
x(z)� xp

2sx

◆◆
.

Therefore,

P(q̂|z, x, 0)� P(q̂|z, x)
J(q̂, z)

=

R
q̂

�• (1 � J(t, z)) p(t|z, x)dt � (1 � J)P(q̂|z, x)
(1 � J)J(q̂, z)

>
JP(q̂|z, x)� J(q̂, z)P(q̂|z, x)

(1 � J)J(q̂, z)

=
P(q̂|z, x)

1 � J

✓
J
J
� 1
◆

.

The inequality follows, because J(t, z) < J(q̂, z) for any t < q̂ < z. The limit of
P(q̂|z, x)/(1 � J) is F(s�1

x (q̂ � x)), which is bounded above zero. Moreover,

lim
z!•

J
J
= lim

z!•
w

1 � F
✓

x(z)�Xp
1+bsx

◆

1 � F
⇣

x(z)�q̂

sx

⌘ + (1 � w)
1 � F

⇣
x(z)�xp

2sx

⌘

1 � F
⇣

x(z)�q̂

sx

⌘ .

The second term is unbounded since the numerator goes to 0 at the rate slower than
does the denominator. This establishes the claim.

Claim 2. For z sufficiently large,

lim
z!•

x̂U(q̂, z)� x̂m(q̂, z)
J(q̂, z)

= •.

For any q̂, P(q̂|z, x̂U, 0) = c and P(q̂|z, x̂m) = c. Using a first-order expansion, we
obtain:

x̂U � x̂m =
P(q̂|x̂U, z)� P(q̂|x̂U, z, 0)

Px(q̂|z, x)
,

for some x 2 (x̂m, x̂U). Thus,

x̂U(q̂, z)� x̂m(q̂, z)
J(q̂, z)

=
�1

Px(q̂|z, x)

 
P(q̂|x̂U, z, 0)� P(q̂|x̂U, z)

J(q̂, z)

!
.

It is easy to verify that Px(q̂|z, x) is bounded away from 0, because

lim
z!•

Px(q̂|z, x) =
�1
sx

f

 
q̂ � x

sx

!
< 0.

11



The claim then follows from Claim 1.

The inequality in the lemma holds if and only if

F

 
x̂U � q̂

sx

!
� F

 
x̂m � q̂

sx

!
> JF

 
x̂U � q̂

sx

!
.

Using a first-order expansion, this is equivalent to

f

 
x � q̂

sx

!✓
x̂U � x̂m

sx

◆
> JF

 
x̂U � q̂

sx

!
,

for some x 2 (x̂m, x̂U). Rearrange it, we observe that it is equivalent to

1
sx

f

⇣
x�q̂

sx

⌘

F
⇣

x̂U�q̂

sx

⌘ >
J

x̂U � x̂m
.

The left-hand-side is positive and bounded above 0. Claim 2 establishes that the right-
hand-side goes to 0, as z goes to infinity. For the case of z going to negative infinity,
the argument is symmetric.

Lemma 9. Let L ⌘ D2/[(JPx � D)((1 � J)Px + D)]. There exist values of d for which
the lower bound of L is increasing in b and is bounded above 0 when b approaches 1.

Proof. We take a number of steps to prove this lemma.

Claim 1. D < f Px, where

f ⌘
s

b

1 + b

f

✓
kp

1+bsx

◆

f(0)

2

42F

0

@ kq
1+b

b

sx

1

A� 1

3

5 > 0.
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Using the formula for D in the proof of Lemma 6,

�D =
wbp

1 + bsx
f

 
kp

1 + bsx

!2

42F

0

@ kq
1+b

b

sx

1

A� 1

3

5

+
1 � wp

2sx
f

✓
kp
2sx

◆ 
2F
✓

kp
2sx

◆
� 1
�

= f

2

66664
wbp
bsx

f(0) +
1 � w

sx
f(0)

s
1 + b

2b

f

⇣
kp
2sx

⌘

f

✓
kp

1+bsx

◆
2F
⇣

kp
2sx

⌘
� 1

2F

 
kq

1+b

b

sx

!
� 1

3

77775

> f

"
wbp
bsx

f(0) +
1 � w

sx
f(0)

#

= � f Px.

The inequality holds because b < 1 and therefore,

s
1 + b

2b

f

⇣
kp
2sx

⌘

f

✓
kp

1+bsx

◆
2F
⇣

kp
2sx

⌘
� 1

2F

 
kq

1+b

b

sx

!
� 1

> 1.

This shows that D < f Px.

Claim 2. Let T( f , J) ⌘ f 2/[(J � f )(1 � J + f )]. Then, L > T( f , J) > 0.

Since ∂L/∂D < 0 and D < f Px (Claim 1), we obtain:

D2

(JPx � D)((1 � J)Px + D)
>

( f Px)2

(JPx � f Px)((1 � J)Px + f Px)

=
f 2

(J � f )((1 � J) + f )

> 0.

The last inequality holds because JPx � D < 0 implies that J > f .

We now show that there always exists d such that T( f , J) is increasing in b and is
bounded above 0 when b approaches 1.
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Take k = k0sx for some constant k0. Then

f =

s
b

1 + b

f

✓
k0p
1+b

◆

f(0)

2

42F

0

@ k0q
1+b

b

1

A� 1

3

5 ,

J = 2F(k0)� 1.

For such choice of k, T( f , J) depends on b only through f . It can be verified that f is
increasing in b and T is increasing in f . Hence the lower bound T is increasing in b.
Moreover, for such choice of k, T is bounded above 0 when b equals 1. Finally, k is
decreasing in d, with k approaches infinity when d approaches zero and with k equal
to zero when d is sufficiently high. Therefore, there exists a corresponding value of d

for any choice of k.

Lemma 10. In the “communication model,” the equilibrium triple (q⇤, x⇤I , x⇤U) has the
following properties: limz!±• q

⇤(z) = q

⇤
ms, limz!±• x⇤U(z) = x⇤ms, and limz!±• x⇤I (z) =

⌥•.

Proof. We only prove the limiting properties of x⇤U(z) and q

⇤(z) here. The limiting
properties of x⇤I (z) require comparing the rates of convergence of different functions,
and they are formally established in Lemma 3.

Suppose the limit values of both x⇤U(z) and q

⇤(z) are finite. The indifference condi-
tion (9) in “communication model” requires

lim
z!•

Z
q

⇤

�•

1 � J(t, z)
Pr[yi = 0|z, x⇤U]

p(t|z, x⇤U)dt = c.

By Lemma 3 (Claim 1), both x(z) and x(z) go to infinity as z goes to infinity. Therefore,
for any t  q

⇤, the probability that xj does not belong to [x(z), x(z)] goes to one. We
thus have

lim
z!•

1 � J(t, z)
Pr[yi = 0|z, x⇤U]

= 1.

The indifference condition for type x⇤U becomes:

lim
z!•

Z
q

⇤

�•
p(t|z, x⇤U)dt = F

✓
q

⇤ � x⇤U
sx

◆
= c,

where the first equality follows because w(z, x⇤U) goes to 0 as z goes to infinity.

When z goes to infinity, J(q⇤, z) goes to zero. Therefore the critical mass condition
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(10) for the “communication model” becomes,

lim
z!•

J(q⇤, z)F
✓

x⇤I � q

⇤

sx

◆
+ (1 � J(q⇤, z))F

✓
x⇤U � q

⇤

sx

◆
= F

✓
x⇤U � q

⇤

sx

◆
= q

⇤.

Given (q⇤, x⇤U) solves the same equation system as that in the “pure noise model,”
we conclude that limz!• x⇤U(z) = x⇤ms and limz!• q

⇤(z) = q

⇤
ms. The proof of the case

for the limit as z goes to minus infinity is analogous.

B. The Participation Cost in the “Communication Model”

Our analysis of the “communication model” focuses on two types of rumors: (1) the
case when the rumor is extreme (Proposition 3); and (2) the case when the rumor is
close to neutral (Proposition 4 and 5). Proposition 3 holds regardless of the cost of par-
ticipating in attack c. Proposition 4 and 5 are proved using the parameter restriction
c = 0.5. This case facilitates comparison across models and offers analytical conve-
nience for the following reasons.

First, when c = 0.5, we have x0 = q

0 = z0 = 0.5 for any parameter values of the
model. This property implies that the conditional mean of the regime strength q is the
same across models:

E[q|x0] = E[q|z0, x0] = E[q|z0, x0, 1] = E[q|z0, x0, 0] = q

0.

This common posterior mean allows us to use the ordering of derivatives with respect
to z to make inference on the ranking of equilibrium regime thresholds across models,
and therefore, to analyze the effects of public signal, skepticism and communication.

Second, in this case, we shut down one aspect of the “skepticism effect” when z is
close to the neutral rumor, which simplifies our analysis substantially. When the value
of z deviates from z0, the “skepticism effect” manifests itself in two facts—that citizens
are not sure if the rumor is informative or not (w(z, xi) is between 0 and 1), and that
citizens adjust the posterior weight when z adjusts (∂w(z, xi)/∂z may or may not be
equal to 0). The second effect is very small when we vary z around the neutral rumor.
The intuition is that when the rumor is neutral, it does not matter that much to citizens
whether it is from the informative or uninformative source in the “mute model.” It is
not that important either, whether the messages from their peers confirm the rumor
or not in “communication model.” Therefore, the effect arising from the change in
w(z, xi) tends to be small. In the case where c = 0.5, we obtain x0 = z0, therefore, the
second channel of skepticism is closed down, i.e., ∂w(z0, x0)/∂z = 0. But as long as x0

is not very far away from z0, ∂w(z0, x0)/∂z will be small.
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In what follows, we demonstrate that removing such an effect does not affect our
results when rumor is close to neutral. Proposition 4 is proved analytically for the case
c = 0.5. But we verify numerically that the result holds generally for any c.

Conjecture. For any c, at z = z0 such that q

⇤(z0) = q

⇤
m(z0),

dq

⇤(z0)
dz

<
dq

⇤
m(z0)
dz

< 0.

Following the same logic described in the text, the above conjecture is true if con-
ditions (17) and (18) hold for any c. We can show analytically that (18) holds for any c.
We provide a sufficient condition for (17) to hold, and verify numerically that such a
sufficient condition is satisfied for any c.

Lemma 11. For any c, at z = z0 and q̂ = q

0,

J
∂x̂I

∂q̂

+ (1 � J)
∂x̂U

∂q̂

>
∂x̂m

∂q̂

.

Proof. For any c, we derive ∂x̂I/∂q̂ and ∂x̂U/∂q̂ as follows,

∂x̂I

∂q̂

=
�Jp(q0|z0, x0)

JPx � D
=

∂x̂m
∂q̂

1 � D
JPx

,

∂x̂U

∂q̂

=
�(1 � J)p(q0|z, x0)
(1 � J)Px + D

=
∂x̂m
∂q̂

1 + D
(1�J)Px

.

where D =
R

q

0

�• PxdJ(t, z0) + c · ∂ Pr[y = 1|z0, x0]/∂x. Inequality (18) holds, because

J
∂x̂I

∂q̂

+ (1 � J)
∂x̂U

∂q̂

� ∂x̂m

∂q̂

=

"
J

1 � D
JPx

+
1 � J

1 + D
(1�J)Px

� 1

#
∂x̂m

∂q̂

=

✓
D
Px

◆2 ∂x̂I
∂q̂

∂x̂U
∂q̂

J
(1 � J)

∂x̂m

∂q̂

> 0.

Lemma 12. For any c, at z = z0 and q̂ = q

0,

∂x̂I

∂q̂

>
∂x̂m

∂q̂

>
∂x̂U

∂q̂

.

Hence, D < 0 for any c.
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Proof. Toward a contradiction, assume that ∂x̂I/∂q̂ < ∂x̂m/∂q̂, evaluated at z = z0 and
q̂ = q

0. Pick q1 slightly above q

0. There exists x1 > x0 such that P(q1|z0, x1, 1) = c.
From the proof of Lemma 4, we know that there exists q2 such that G(q2, x1) = 0 and
q2 < q

0. Therefore, q1 > q2. Since G(·, x1) crosses zero once and from above, it follows
that G(q1, x1) > 0. This implies that

P(q1|z0, x1) < P(q1|z0, x1, 1) = c.

Let x2 be such that P(q1|z0, x2) = c. By assumption, ∂x̂I/∂q̂ < ∂x̂m/∂q̂. Therefore,
x2 = x̂m(q1, z0) > x̂I(q1, z0) = x1. Since P(q̂|z0, x) is decreasing in x, we obtain:

P(q1|z0, x1) > P(q1|z0, x2) = c,

a contradiction. Thus, we must have ∂x̂I/∂q̂ > ∂x̂m/∂q̂. The proof that ∂x̂m/∂q̂ >

∂x̂U/∂q̂ follows a similar logic. Finally,

∂x̂I

∂q̂

� ∂x̂m

∂q̂

=
�pD

(JPx � D)Px
.

Since JPx � D and Px are negative, ∂x̂I/∂q̂ > ∂x̂m/∂q̂ implies that D < 0.

It remains to be shown that inequality (17) holds for any c. We can write:

∂x̂I
∂z

=
∂x̂m
∂z

1 � D
JPx

+
� Q

JPx

1 � D
JPx

,
∂x̂U
∂z

=
∂x̂m
∂z

1 + D
(1�J)Px

+

Q
(1�J)Px

1 + D
(1�J)Px

;

where Q = ∂tI/∂z � J(q0, z0)∂P(q0|z0, x0)/∂z. Since ∂x̂m(q0, z0)/∂z < 0, following the
same logic as in the proof of Lemma 11, we have

J

 
∂x̂m
∂z

1 � D
JPx

!
+ (1 � J)

 
∂x̂m
∂z

1 + D
(1�J)Px

!
<

∂x̂m
∂z

.

Therefore, inequality (17) holds if

pDQ
(�Px)(JPx � D)((1 � J)Px + D)

> 0.

Lemma 12 already establishes that D < 0. Therefore, it suffices to show that Q < 0,
which is sufficient for the conjecture to hold. We have shown that Q = D < 0, when
c = 0.5. When c 6= 0.5, an analytical proof cannot be obtained. Numerically, we
verify that Q < 0 holds for a wide range of parameter values. For example, our
computation shows negative values of Q on the grids (c, s), with c 2 {0.1, 0.2, . . . , 0.9}
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and s 2 {�1.5,�1.4, . . . , 1.5}, using other parameter values specified in Section 3.
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