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1. Introduction

The mechanisms underlying expectation formation are crucial for understanding eco-
nomic decisions. While it is documented that individuals in general overreact to infor-
mation (Bordalo, Gennaioli, Ma, and Shleifer 2020), there has been growing interest in
the circumstances under which the overreaction is stronger or weaker. In this paper,
we provide new evidence that the degree of overreaction can be heterogeneous across
individual forecasters, even when they receive the same information. To organize the
facts, we propose a forecasting model where agents make forecasts based on noisy
information and are uncertain about information quality.

To test how agents form expectations in general and how they react to new in-
formation in particular, it would be ideal to have a testing ground in which (i) the
new information acquired by agents is observable and measurable, and (ii) agents’
forecasts before and after receiving the new information are available. We consider
an environment that is fairly close to this: financial analysts forecast the earnings of
firms, firms release managerial guidance for earnings, and then analysts update their
earnings forecasts. Forecast revisions are then defined to be the differences between
analysts’ updated forecasts after receiving managerial guidance and their initial fore-
casts before receiving it. That is, forecast revisions are constructed to reflect the impact
of the guidance on earnings.

Using earnings forecasts data (individual analysts’ EPS forecasts from the I/B/E/S
Estimates) and managerial guidance data (the I/B/E/S Guidance data) from 1994 to
2017, we provide a number of findings. First, analysts’ forecasts overreact to informa-
tion that arrives during the time window that is constructed to encompass managerial
guidance. We show that forecast revisions are negatively correlated with forecast er-
rors, which are defined to be the differences between realized earnings and analysts’
updated forecasts. This suggests that upward (downward) revisions can predict neg-
ative (positive) forecast errors, i.e., there is too much revision relative to the rational
benchmark. This result is consistent with the existing findings of Bordalo, Gennaioli,
Ma, and Shleifer (2020) using macroeconomic survey data.

Second, our new finding in this paper is that the overreaction is heterogeneous
across analysts. We define guidance surprises to be the differences between the man-
agerial guidance and analysts’ initial forecasts. We construct surprises at the firm-
quarter-analyst level, rank those surprises from the most negative to the most positive
and then group them into deciles. Estimating the degree of overreaction in each decile
subsample, we find that overreaction is stronger when surprises are negative; overre-
action tends to be weaker when surprises are larger in size.

Third, we further directly explore how forecast revisions respond to guidance sur-
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prises with nonparametric estimations. We find that forecast revisions are asymmetric
in surprises: forecast revisions are stronger when the surprises are negative than those
when the surprises are of the same magnitude but positive. Furthermore, forecast re-
visions are not monotonically increasing in surprises either: when the surprises are
large enough, forecast revisions decrease in surprises. Thus, the estimated relation-
ship between forecast revisions and surprises displays a pattern of asymmetry and
non-monotonicity. It is worth pointing out that the two new facts corroborate with
each other.1

The new evidence on the documented heterogeneous overreaction pattern calls for
a new theory, in which optimal response to new information have to be state-dependent.
We consider a forecasting model where analysts would receive managerial guidance
for earnings from the firm and update their forecasts in response. The key departures
from standard forecasting models are (a) that analysts are ambiguous about the quality
of the managerial guidance and (b) that they are ambiguity averse and the degree of
ambiguity aversion is finite. The former requires that analysts should update their
beliefs about the quality of guidance based on the guidance itself and then update
their beliefs about earnings for any possible quality. The latter implies that analysts
wish to act in a robust fashion.

In this model, the extent to which analysts overreact (or even underreact) to infor-
mation while revising their forecasts depends critically on how analysts perceive the
quality of managerial guidance. Specifically, analysts behave as if, in their posterior
beliefs, they optimally overweigh the states of the world where their expected utility is
low. When surprises are negative, analysts would subjectively “overcount” the quality
of guidance, which leads to a more pronounced overreaction. In addition, when sur-
prises are sufficiently large in size, analysts would infer that the quality of guidance
is less likely to be high (the standard Bayesian mechanism), which leads to a more
moderated overreaction (or potentially an under-reaction). Both model mechanisms
are consistent with the pattern of heterogeneous overreaction found in the data.

In Section 4, we demonstrate that it is crucial to allow agents to possess a finite
degree of ambiguity aversion to simultaneously capture both nonmonotonicity and
asymmetry in the relationship between forecast revisions and surprises. Without am-
biguity aversion, analysts’ forecast revisions are symmetric, despite the sign of sur-
prises. With extreme ambiguity aversion (i.e., the Wald (1950) maxmin criterion), an-
alysts’ forecast revisions are monotonic in surprises, despite the uncertainty in infor-
mation quality. Furthermore, we characterize an explicit model counterpart for the

1If forecast revisions are linear in surprises, then the extent of overreaction to new information cannot
be heterogeneous; and if overreaction is heterogeneous in size and direction of surprises, then forecast
revisions cannot be linear in surprises. This connection will be characterized in Section 4.3.
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coefficients that quantify the extent of heterogenous overreaction documented in the
data.

In Section 5.1, we present a quantitative rendition of our model, demonstrating
that our estimated model can produce a cross-sectional overreaction pattern consis-
tent with the data. In Section 5.2, we examine two auxiliary predictions of our model
using the data, which help corroborate our model mechanisms. While our study is
the first to discover and rationalize this set of facts, there might be other mechanisms
contributing to the documented patterns. To underscore our theoretical contributions
to the literature, we compare our model with several existing theories in Section 5.3,
including diagnostic beliefs, overconfidence, loss aversion, and agency theory.

Both the facts documented and the mechanisms characterized in this paper are rel-
evant for the expectation formation literature in general and studies concerning over-
reactions to information in particular. The empirical part of this paper builds on a
new literature that empirically explores information frictions and expectation forma-
tion (Coibion and Gorodnichenko 2015). Using macroeconomic survey data, Bordalo,
Gennaioli, Ma, and Shleifer (2020) and Broer and Kohlhas (2022) find that forecast-
ers overreact to information in general.2 In an experimental setting, Afrouzi, Kwon,
Landier, Ma, and Thesmar (2022) establish that the overreaction is stronger for a less
persistent data generation process and stronger for longer forecast horizons.

In contrast, we document the heterogeneous overreaction among analysts, taking a
step beyond the existing literature. Additionally, we develop a complementary empir-
ical approach that directly investigates the relationship between forecast revisions and
observable new information, which can prove to be a valuable tool for the literature.
It’s worth highlighting that we establish a novel empirical setting for studying expec-
tation formation, which holds significance for other related research in this field.3

Our new theory adds to the literature of expectation formation by explicitly scru-
tinizing how forecasters react to noisy data of uncertain quality. Both Epstein and
Schneider (2008) and Baqaee (2020) characterize the process of expectation formation
when agents have an extreme ambiguity-averse preference (i.e., multiple priors) and
show that belief updating is asymmetric in the contexts of asset pricing and business

2Other recent studies also provide evidence on the forecasts of financial market participants, such
as Bordalo, Gennaioli, Porta, and Shleifer (2019), Bouchaud, Krueger, Landier, and Thesmar (2019),
Amromin and Sharpe (2014), Barrero (2022), Ma, Ropele, Sraer, and Thesmar (2020) and Greenwood
and Shleifer (2014). Farmer, Nakamura, and Steinsson (2021) study a dynamic environment in which
slow learning over the unit root long-run trend can rationalize a set of forecasting anomalies at the
consensus level. Binder, Kuang, and Tang (2023), and Kuang, Mitra, Tang, and Xie (2023) use survey
experiments to study the effects of economic policies on the forecasts of financial variables.

3We use managerial guidance to facilitate the exploration because this is among the very few kinds
of information that are observable, measurable and systematically accessible to econometricians. Man-
agement earnings guidance is one of the most significant events that releases new information to the
market during a quarter.
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cycles, respectively. In contrast, our work allows for a finite degree of aversion in the
smooth model of ambiguity following Klibanoff, Marinacci, and Mukerji (2005) and
Cerreia-Vioglio, Maccheroni, and Marinacci (2022). Focusing on ambiguity about the
second moments of the data generating process, our model offers theoretical predic-
tions that are qualitatively different from the aforementioned works and that are also
empirically relevant.

In general, there is a growing interest in understanding how agents’ use of informa-
tion deviates from the rational expectation benchmark. Prominent examples include
diagnostic expectations (Bordalo, Gennaioli, and Shleifer 2018, Bianchi, Ilut, and Saijo
2022), overconfidence (Broer and Kohlhas 2022), cognitive discounting (Gabaix 2020),
level-K thinking (García-Schmidt and Woodford 2019, Farhi and Werning 2019), nar-
row thinking (Lian 2020), adaptive learning (Adam, Kuang, and Marcet 2012, Kuang
and Mitra 2016), autocorrelation averaging (Wang 2020) and loss aversion (Elliott, Ko-
munjer, and Timmermann 2008, Capistrán and Timmermann 2009). A common fea-
ture of those models in a Gaussian environment is that forecast revisions are increasing
in surprises and the direction of surprises does not matter. Our model differs in both
aspects.4

2. Evidence

2.1. Data, Sample and Timing

In this section, we explore how analysts revise their earnings forecasts upon newly
received information. Our goal is to construct a scenario where the information flow
is observable, measurable and accessible to the econometrician.

Toward this end, we focus on managerial guidance, which is among the very few
information sources that satisfy such criteria. In financial markets, the management
teams of publicly listed firms issue guidance for the earnings of the current quarter
between the last quarter’s and current quarter’s earnings announcements. That is a
crucial opportunity for firms to provide information about earnings to market partic-
ipants, such as financial analysts. Because of its importance, earnings guidance often
triggers analysts’ forecast updates: analysts likely revise their forecasts a few days
after receiving earnings guidance, i.e., on average 4 days in our sample (constructed
in this section).5 Furthermore, it is common that firms continue to provide earnings

4State-dependent forecasting behavior can be a consequence of strategic information provision. Ni-
mark and Pitschner (2019) demonstrate that asymmetry in forecasting may arise when an informa-
tion provider slants negative news, making it more salient when reported. In contrast, in our model,
asymmetry arises due to ambiguity in information quality and ambiguity aversion, without strategic
behavior from information providers.

5On average, analysts publish their initial forecasts 43 days before earnings guidance becomes avail-
able to the market.
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Figure 1. Timeline. We consider managerial guidance Gt issued between At�1 and At. If the guidance
for EPS in quarter t is released on the date of At�1 or within two days after At�1, then it is bundled.
If the guidance is released between Qt and At, it is a preannouncement. If more than one guidance is
released between At�1 and At, we choose the latest one.

guidance for an extensive period of time, and the discontinuation in earnings guid-
ance is typically perceived unfavorably by the market (Chen, Matsumoto, and Raj-
gopal 2011). Earnings guidance includes various forms, such as point estimates and
range estimates.

The Thomson Reuters I/B/E/S Guidance data provides quantitative managerial
expectations, such as earnings per share, from press releases and transcripts of cor-
porate events. The data cover managerial guidance from more than 6,000 companies
in North America that can date back to as early as 1994. Furthermore, the I/B/E/S
Guidance data are available on the same accounting basis as the I/B/E/S Estimates
that provide individual analysts’ forecast data. This makes it feasible to rigorously
identify the timing of events and to compare managerial guidance and analysts’ fore-
casts for the same firm in a certain period. Our sample construction based on the
I/B/E/S Guidance and Estimates data is elaborated and relegated to Appendix A.1.

We stress that we intentionally construct a time window where analysts’ initial and
updated forecasts encompass the earnings guidance of the current quarter. This con-
struction allows us to analyze how forecasts are updated in response to information
observable to the econometrician. The construction procedure can be better appre-
hended with the aid of Figure 1, which delineates the sequence of major events. Ana-
lyst i learns firm j’s EPS for quarter t � 1 at the date of At�1, which is EPSj,t�1. Then
he or she issues a forecast Fijt,0 for firm j’s EPS in quarter t. Firm j offers guidance Gjt

for firm j’s earnings in quarter t. Then, analyst i updates his or her forecast for firm
j’s EPS in quarter t (i.e., Fijt,1). Quarter t ends at the date of Qt, and firm j announces
its EPS for quarter t at the date of At. In sum, in this setting, both initial and updated
forecasts are made within the same period, after At�1 and before At.

Our full sample consists of 110,895 pairs of individual analysts’ forecasts (initial
and updated forecasts) issued by 6,987 different analysts for 3,226 district firms over
the period from 1994 to 2017. A summary of statistics is reported in Appendix A.2.
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Table 1. Forecast Error on Forecast Revision

Outcome Variable: Forecast Error FEi

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Baseline Control Unscaled Baseline Control Unscaled

(1) (2) (3) (4) (5) (6)

FRi -0.0961*** -0.0963*** -0.0924*** -0.0914*** -0.0914*** -0.0736***
(0.0142) (0.0143) (0.0124) (0.0117) (0.0117) (0.0101)

Earnings of the Last Quarter 0.0036 0.0010
(0.0070) (0.0050)

Firm FEs YES YES YES YES YES YES

Obs. 110,895 110,895 110,895 110,895 110,895 110,895
Adj. R-sq 0.2125 0.2125 0.1796 0.1947 0.1947 0.1812
The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).***
p<0.01, ** p<0.05, * p<0.1

2.2. Overreaction

Our investigation of how analysts revise their forecasts starts by following the ap-
proach proposed by Bordalo, Gennaioli, Ma, and Shleifer (2020), in which they ex-
amine professional analysts’ forecasts of macro variables. That is, we regress ex post
analyst forecast errors on ex ante analyst forecast revisions at the individual level. To
this end, we construct both forecast error FEijt and forecast revision FRijt. The former
is the difference between the realized earnings per share for firm j in quarter t and the
revised EPS forecast by individual analyst i for firm j in quarter t. The latter is the
difference between the revised forecast after guidance and the initial forecast before
guidance issued by the same analyst i for firm j in quarter t. To avoid the heterogene-
ity embedded in EPS across firms, both FEijt and FRijt are scaled by the stock price at
the beginning of quarter t. To mitigate the impact of potential outliers, both of them
are winsorized at the 1% and 99% level of their respective distributions. We estimate
the following equation:

FEijt = b0 + b1FRijt + dj + wijt, (1)

where we control for firm fixed effect (dj) to absorb time-invariant firm characteristics.
Following Petersen (2009), the standard errors are clustered at the firm and calendar
year-quarter to adjust for both inter-temporal and cross-sectional correlations.

The results from estimating Equation (1) are presented in column (1) of Table 1. We
find that forecast errors are negatively correlated with forecast revisions at the indi-
vidual analyst level and statistically significant at less than the 1% level. The negative
coefficient indicates that analysts overreact to new information over the period that the
managerial guidance is received by analysts. Despite the settings being entirely differ-
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ent, this result is consistent with those found in Bordalo, Gennaioli, Ma, and Shleifer
(2020) and Broer and Kohlhas (2022).

We add the earnings in the last quarter (t � 1) of firm j to the right-hand side of
Equation (1) and report the results in column (2) of Table 1. The change in the esti-
mated coefficient on forecast revision is negligible, and the coefficient on the earnings
in the last quarter is close to zero and not significant. This suggests that the informa-
tion about earnings in past quarters is fully utilized by analysts to form either initial
or updated forecasts. That is the key difference from studies using SPF data, where
initial and updated forecasts are made in two separate periods.

To ensure that our results are robust to data construction, we present results by
not scaling earnings and forecasts by stock prices. The estimate for forecast revisions
is robust, which is reported in column (3). To test whether our results are driven by
outliers, we winsorize FEijt and FRijt at the 2.5% and 97.5% levels of their respective
distributions and re-do the aforementioned exercises. Those results are reported in
columns (4)-(6) of Table 1, which demonstrate the robustness of our findings.6

Two comments on the specification of Equation (1) are in order. First, incorpo-
rating the firm fixed effect into this regression is crucial for identifying the average
overreaction. If there is a systematic bias in EPS forecasts that varies across firms, the
coefficient (b1) would be biased. This is because Equation (1) is estimated by pooling
the firms. Second, to address concerns about the potential Nickel bias arising from the
inclusion of the firm fixed effect, we conduct separate estimations of Equation (1) for
each firm, following the approach proposed by Bordalo, Gennaioli, Ma, and Shleifer
(2020). The median estimation of b1 is then reported in Table A4 of Appendix B. The
median coefficient is similar to that reported in Table 1.

2.3. Heterogeneous Overreaction

One unique feature of our setting is that the guidance is common for all analysts, but
the surprises contained in the guidance are not common across analysts due to their
heterogeneous initial forecasts. Analysts can be surprised to different extents and even
in different directions. One natural question arises: Do analysts overreact differently
to the same information? In this section we explore such heterogeneity of overreaction
across analysts.

First, we construct a variable guidance surprise (i.e., Surpriseijt) to capture the ob-
servable surprise in managerial guidance for individual analysts. It is defined and
measured by the difference between the value of guidance (i.e., Gjt) issued by firm

6Appendix B.1 reports additional robustness tests demonstrating that our results remain robust with
different sample selection and trimming the outliers instead of winsorizing. The estimated coefficients
in the aforementioned exercises are qualitatively unchanged and only different in magnitude.
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j in quarter t and analyst i’s corresponding initial forecast (i.e., F0ijt) for firm j in quar-
ter t before guidance. That is, Surpriseijt ⌘ Gjt � F0ijt. For each individual analyst,
the managerial guidance can be unfavorable or favorable if it falls below or exceeds the
analyst’s initial forecast before guidance, and the managerial guidance can be large or
small if it is far from or close to the analyst’s initial forecast before guidance.

Second, we remove outliers by trimming forecast errors, forecast revisions and sur-
prises at the 2.5% and 97.5% levels of their respective distributions (to be consistent
with the nonparametric estimations in the next section). We then rank surprises from
the most negative to the most positive, sort them into deciles and label them from 1 to
10 according to the decile rank. To enlarge the subsample size and smooth estimates,
we define a running decile window j such that (1) window j covers decile j � 1, j, and
j + 1 if j 6= 1 or j 6= 10; (2) running decile window 1 covers deciles 1 and 2; and (3)
running decile window 10 covers deciles 9 and 10.

Third, for each subsample of a running decile window, we re-estimate Equation (1)
(i.e., regressing forecast errors on forecast revisions). We plot the estimated coefficients
and confidence intervals in Figure 2 against their window ranks. We find that analysts
overreact to information in each subsample, i.e., the estimated coefficient b1 is negative
and significant. However, the degree of overreaction is not constant and is U-shaped
in surprises and skewed to the left. This implies that the overreaction is stronger when
the surprises are negative and the overreaction is weaker when the surprises are larger
in size.7

In summary, on the one hand, we confirm that analysts overreact to information
in this particular setting. Given that the forecast revisions are constructed around
managerial guidance, analysts are likely to overreact to guidance surprises. On the
other hand, we discover that the way that analysts react to information depends on
the characteristics of the surprises that they receive, such as the size and direction of
the surprises.

2.4. Forecast Revisions and Surprises: Mechanisms

In this section, we set out to uncover the mechanisms that underlie the heterogeneous
overreaction pattern. To this end, we directly investigate the relationship between
forecast revisions and surprises. Note that if forecast revisions are linear in surprises,
then the degree of overreaction to new information cannot be heterogeneous (charac-

7To examine whether our results are robust, we rerun the exercises with a sample where forecast
errors, forecast revisions and surprises are trimmed at the 1% and 99% levels of their respective distri-
butions. We also re-estimate Equation (1) for each decile of surprises without using running windows.
The patterns found are rather similar. We relegate them to Appendix B.2 (see Figures A1 and A2, re-
spectively).
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Figure 2. Heterogeneous Overreaction. The estimated coefficients of the FE-on-FR regressions b1 and
the 95% confidence interval for each running decile window are plotted against the window rank. Run-
ning decile window j covers decile j � 1, j, and j + 1 if j 6= 1 or j 6= 9; running decile window 1 covers
deciles 1 and 2, and running decile window 10 covers deciles 9 and 10.

terized in Section 4.3); and if overreaction is heterogeneous in the size and direction of
surprises, then forecast revisions cannot be linear in surprises.

To estimate the relationship in a more reliable fashion, we resort to the nonpara-
metric estimation approach. Using the standard tool of local polynomial regression,
we estimate the relationship between forecast revisions and surprises by using the
Epanechnikov kernel and the third degree of the smoothing polynomial.

Because we are interested in “large” surprises and because we estimate the rela-
tionship with local polynomials, the results can be affected and biased by winsoriza-
tion of the data. To alleviate this concern, we instead trim both forecast revisions and
surprises at the 2.5% and 97.5% levels of their respective distributions and residual-
ize them by controlling for time, analyst, and firm fixed effects. We estimate their
relationship using the local polynomial specification, and the results are presented in
Figure 3(a). Forecast revisions are decreasing, increasing and decreasing in surprises
and are asymmetric around the origin. Figure 3(b) illustrates its derivatives with re-
spect to surprises. The derivatives are negative when the surprises are large enough
and positive when they are small. Forecast revisions respond more strongly to nega-
tive surprises than to positive surprises of the same magnitude. In Appendix B.3, we
present a range of robustness checks, and the empirical findings are robust.

To quantify the degree of asymmetry in the estimated relationship, we compute
the percentage deviations of forecast revisions to negative surprises (i.e., Surpijt < 0)
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Figure 3. Nonparametric estimation, 5% trimming (2.5%, 97.5%). Panel (a) illustrates the relation-
ship between forecast revisions and surprises in managerial guidances (both trimmed at 5%) that is
nonparametrically estimated using the Epanechnikov kernel and the third degree of the smoothing poly-
nomial. It is decreasing, increasing and decreasing and asymmetric around the origin. The shaded areas
represent the 95% confidence intervals for the respective estimations. Panel (b) illustrates its derivatives
with respect to surprises for the range where the non-parametric estimation and the numerical deriva-
tive are relatively precise, i.e., when surprises are between [�0.025, 0.030]. The derivatives are negative
when the surprises are large enough and positive when they are small. Forecast revisions respond more
strongly to negative surprises than to positive surprises of the same magnitude.

from forecast revisions to positive ones of the same magnitude (i.e., �Surpijt < 0) and
construct an average conditional on surprises are negative. That is,

X ⌘
Z 0

�•

���FR
⇣

Surpijt

⌘����
���FR

⇣
�Surpijt

⌘���
���FR

⇣
�Surpijt

⌘���
dP
⇣

Surpijt|Surpijt < 0
⌘

, (2)

where P
⇣

Surpijt|Surpijt < 0
⌘

is the conditional distribution of surprise that can be
directly inferred from the data. The asymmetry measure X is positive if, on average,
negative surprises (i.e., Surpijt < 0) result in larger forecast revisions compared to
positive ones. If X is zero, the response to forecast revisions to surprises are symmetric.

In our baseline sample, we find that X = 0.18, indicating that, on average, nega-
tive surprises result in revisions that are approximately 18% stronger than revisions
triggered by positive surprises of similar magnitude.

The facts documented in sections 2.3 and 2.4 would be puzzling if one assumed
that analysts know the quality of managerial guidance with certainty. In such a case,
forecast revisions would be linear in surprises within the Gaussian environment, and
the degree of overreaction would also be constant. Once we relax this assumption
and accommodate the conjecture that the quality of information can be uncertain to
analysts, those documented facts can be reasonable and consistent with each other. To
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account for those facts in a unifying framework, we propose a model where analysts
are uncertain about the quality of information that they receive.

3. The Model

3.1. Setup

Consider a one-period static model where there exists a continuum of analysts, in-
dexed by i 2 [0, 1], and a firm. The firm’s earnings q are stochastic. Analyst i makes
a forecast F0i about the earnings at the beginning of the period and makes an updated
forecast Fi at the end of the period.

Utility function. In the context of forecasting problems, we impose one restriction
that analysts’ optimal forecast is precisely F⇤ = q, conditional on analysts’ information
being complete (i.e., the earnings q are known to the analysts). Any utility functions
that satisfy this restriction can be approximated by a utility function U (·, ·) that is
quadratic in both forecasts and earnings. In the main text, we consider one particular
case among this class of quadratic utility functions, which is given by:

U (F, q) =� (F � q)2 + bq, (3)

where b is a constant. To interpret parameter b, consider the scenario where analysts
have complete information. They can minimize the forecasting errors to zero, but the
realized earnings may still matter for analysts in our model. The parameter b > 0
(b < 0) implies that analysts would be better (worse) off if the realized earnings q

were higher. The parameter b will be estimated and interpreted in Appendix C.8

This utility function is used for ease of exposition and highlighting our new mech-
anisms. In Technical Appendix, we present a full characterization of the model with
the most general quadratic utility function of this class. We show that it is qualita-
tively similar and provide evidence that the additional parameters in the general case
are empirically irrelevant in this setting.

Information structure. We assume that the earnings follow a normal distribution
with mean 0 and variance s2

q , i.e., q ⇠ N
�
0, s2

q

�
; let tq = 1/s2

q . The distribution
of earnings is known to all analysts. To have a direct mapping with the data, we
allow each analyst i to be endowed with private information about the earnings before
making the initial forecasts, as follows:

z0i = q + ii,

8Appendix C provides discussions on empirical evidence that analysts’ utility can be dependent on
earnings. In this section, we provide a characterization in which b can take any value.
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where ii is normally distributed with mean 0 and variance s2
z , i.e., ii ⇠ N

�
0, s2

z
�
; let

tz = 1/s2
z . Analyst i makes forecast F0i with heterogeneous information z0i.

Analysts then receive managerial guidance released by the firm, which is a noisy
signal about earnings:

y = q + h.

where h is normally distributed with mean 0 and variance s2
Y, i.e., h ⇠ N

�
0, s2

Y
�
; let

tY = 1/s2
Y. After analysts have made their updated forecasts, the earnings announce-

ment is made, and the payoffs to analysts are realized.

The information structure in this model warrants discussion. First, in this paper,
we focus on a static model without modeling the dynamics of earnings across peri-
ods. As discussed in Section 2.1, analysts have perfect information about earnings
in the last quarter. Both the initial and updated forecasts in the data are made after
the earnings in the last quarter are known to analysts. In this case, forecasts of the last
period’s earnings are not relevant in this period, conditional on the last quarter’s earn-
ings themselves.9 Note that the updated earnings forecasts of the last period are not
the initial forecasts for earnings in this period. Second, for simplicity, we assume that
unobservable private information (such as new information from analysts’ research or
acquired from other sources) is absent between the two rounds of forecasts. In Techni-
cal Appendix, we fully characterize a generalized model by allowing the presence of
private information and show that all the qualitative properties remain.

Ambiguity-averse preferences. The key departure of this model from the existing fore-
casting literature is that we assume that analysts are uncertain or ambiguous about the
quality of the managerial guidance or their objective precision (i.e., tY). Therefore, they
have to form their own subjective belief about its precision (i.e., ty). Such an assump-
tion is reasonable. Analysts may not know the quality of the guidance with complete
certainty because management has incentives not to release the best possible informa-
tion at hand and because even the best possible estimates from the management can
be plagued with noise but analysts are not certain about its structure.

Specifically, we let Gy be the range of support for the possible precision ty of man-
agerial guidance. Analysts believe that ty 2 Gy and possess some prior belief over Gy,
whose density distribution is given by p

�
ty
�
. We say that one particular ty represents

a model that generates the managerial guidance y.

Furthermore, we assume that analysts dislike uncertainty in the quality of the man-
agerial guidance or are ambiguity averse. In this model, we capture such a preference
of analysts by using the smooth model of ambiguity as proposed in Klibanoff, Marinacci,

9In fact, we show in Section 2.2 that earnings in the last quarter cannot predict forecast errors in the
current quarter conditional on forecast revisions and are orthogonal to forecast revisions in the data.
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and Mukerji (2005). That is, analyst i maximizes the objective function:
Z

Gy
f (Ety [U (Fi, q) |z0i, y]) p

�
ty|z0i, y

�
dty, (4)

where f (·) is some increasing, concave and twice continuously differentiable function.
In addition, Ety [U (Fi, q) |z0i, y] denotes the mathematical expectation conditional on
analyst i’s information set (z0i, y) for a particular model ty (or a certain precision of
managerial guidance). In what follows, we use E

ty
i [U (Fi, q)] to denote the expected

utility of analyst i, unless it causes confusion. The density of the posterior belief over
possible models is assumed to be Bayesian and denoted by p

�
ty|z0i, y

�
.

The curvature of function f (·) captures an aversion to mean-preserving spreads in
E

ty
i induced by ambiguity in ty.10 The more concave the function f (·) is, the stronger

the ambiguity aversion. In other words, it characterizes analysts’ taste for ambigu-
ity. In this paper, we consider a function f (·) that features constant absolute ambi-
guity aversion (CAAA) following Cerreia-Vioglio, Maccheroni, and Marinacci (2022)
throughout:

f (t) = � 1
l

e�lt, (5)

where l � 0 measures the degree of ambiguity aversion. Two special cases are nested.
When l = 0 and f (·) is linear, this corresponds to the case where analysts are ambi-
guity neutral or fully Bayesian. When l ! +•, this corresponds to the case where
analysts’ aversion to ambiguity is infinite, which is the classic Wald (1950) maxmin
criterion.11

3.2. Noisy Information Expectations: RE Benchmark

Our framework is a generalized version of the standard forecasting problem in which
analysts possess noisy information and minimize the mean-squared error of their fore-
casts of the random variable. In other words, the noisy information benchmark is a
special case of our model when agents are ambiguity neutral (i.e., l = 0) and there
exists no uncertainty in information quality (i.e., Gy is singleton).12 In this section, we
characterize such a special case and illustrate why it fails to account for the empirical
patterns documented in Section 2.3 and 2.4 and why deviations from this benchmark
are necessary.

10Ambiguity aversion differs from risk aversion, which is implicitly captured by U (Fi, q). In this
model, it is the aversion to ambiguity rather than the aversion to risk that drives our results.

11The model with extreme ambiguity aversion is a special case of the multiple priors preference pro-
posed by Gilboa and Schmeidler (1989), where the priori set of priors include all Dirac measures of each
model.

12In the noisy information benchmark, the parameter b in Equation (A12) plays no role at all. How-
ever, it is important for the optimal forecasts when agents have ambiguity averse preferences.
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With noisy information expectations, the optimal initial and updated forecasts are
such that

FNI
0i = E [q|z0i] ; FNI

i = E [q|z0i, y] ,

where E [q|Ii] denotes the conditional expectations (i.e., Bayesian posterior). The rela-
tionship between FNI

0i and FNI
i is therefore given by:

FNI
i =

�
1 � ky

�
FNI

0i + kREy,

where kRE is the relevant weight assigned to the public information:

kRE ⌘ tY
tq + tz + tY

> 0. (6)

Therefore, the relevant forecast revision is given by

FRNI
i ⌘ FNI

i � FNI
0i = kRE

⇣
yi � FNI

0i

⌘
, (7)

and forecast error is given by

FENI
i ⌘ q � FNI

i = kqq � kzii � kREh, (8)

where kq ⌘ tq
tq+tz+tY

> 0 and kz ⌘ tz
tq+tz+tY

> 0.

Lemma 1 (FR-on-Surprise and FE-on-FR). In the noisy expectation benchmark, forecast
revisions are linear in guidance surprises and uncorrelated with forecast errors,

Cov
⇣

FENI
i , FRNI

i

⌘
= 0.

Observe that the term (y � FNI
0i ) in Equation (7) is the theory counterpart of man-

agerial guidance surprises in our empirical exercise. Equation (7) predicts that forecast
revisions should be linear in guidance surprises. However, this prediction contradicts
the non-monotone and asymmetric relationship documented in Section 2.4.

Further, using Equations (7) and (8), it is evident that forecast revisions and forecast
errors are uncorrelated. It then predicts that the estimated coefficient in the FE-on-FR
regression should be 0, i.e., no over-reaction at the individual level. This prediction
contradicts evidence that analysts overreact to new information (documented in Sec-
tion 2.2) and that such overreaction varies in a non-monotonic and asymmetric fashion
(documented in Section 2.3).

The key to the failure that the noisy information benchmark cannot capture the
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empirical patterns, is that the optimal forecasting rule is state-independent and deter-
mined by constant signal-to-noise ratios. That is, the weight kRE assigned to the public
signal (i.e., managerial guidance in this context) is constant and independent of the re-
alization of the public signal. However, evidence suggests that the weight should vary
depending on the realization of public signal in a particular way: the weight should
be larger when the surprise is negative than when it is positive but of the same mag-
nitude; and the weight should be negative (instead of positive) when surprises are
large enough. In the following section, we demonstrate that our framework, featuring
the ambiguous information quality and ambiguity aversion towards uncertainty, can
generate a state-dependent forecasting rule that is consistent with data.

3.3. Equilibrium Characterization

In this section, we turn to the characterization of analysts’ optimal forecasts. The initial
forecast of each analyst F⇤

0i is derived by Bayes’ rule:

F⇤
0i =

tz
tz + tq

z0i. (9)

To choose the optimal updated forecast F⇤
i after obtaining a new set of information,

analysts maximize the objective in Equation (4). That is, the optimal forecast F⇤
i is

such that the first-order condition holds:

Fi =
Z

Gy

✓
tzz0i + tyy
tq + tz + ty

◆
p̃
�
ty|z0i, y; Fi

�
dty, (10)

where the distorted posterior belief p̃ is such that

p̃
�
ty|z0i, y; Fi

�
µ f0

⇣
E

ty
i [U (Fi, q)]

⌘

| {z }
Pessimistic Distortion

p
�
z0i, y|ty

�
p
�
ty
�

| {z }
Bayesian Kernel

. (11)

The term with the combined fraction in Equation (10) captures the posterior mean
of the random variable q for a particular model ty, where the weights assigned to
observations (z0i, y) are dictated by Bayes’ rule.

The distribution of ty is updated by following equation (11). When analysts are am-
biguity neutral (i.e., l = 0), f0(·) is constant and the posterior distribution of ty simply
follows Bayes’ rule. When analysts are ambiguity averse (i.e., l > 0), the posterior dis-
tribution of ty is distorted by their pessimistic attitude: its density is reweighted by the
term f0

⇣
E

ty
i [U (Fi, q)]

⌘
.

To understand such pessimism, consider analyst i who obtains observations (z0i, y)
and contemplates releasing a forecast Fi. She views model ty as the more likely model
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if she is worse off under such a model. That is, a model with ty that generates a lower
expected utility for analyst i is given a higher weight in her distorted posterior belief.
Recall that f0(·) > 0 and f00(·) < 0. Consequently, the posterior belief p̃

�
ty|z0i, y; Fi

�

depends on her forecast Fi. Such a dependence is the key difference from the standard
forecasting problems.

To facilitate the subsequent analysis and characterize the pessimism, define the
surprise of managerial guidance y for analyst i by si ⌘ y � F⇤

0i, i.e., the difference be-
tween the guidance y and the analyst’s initial forecast F⇤

0i. The optimality condition of
Equation (10) is represented by:

Fi = F⇤
0i + k (F⇤

0i, si, Fi) · si, (12)

where

k (F⇤
0i, si, Fi) ⌘

Z

Gy

✓
ty

tq + tz + ty

◆
p̃
�
ty|F⇤

0i, si; Fi
�

dty

�
, (13)

and the distorted posterior belief is such that

p̃
�
ty|F⇤

0i, si; Fi
�
⌘ p̃

�
ty|z0i, F⇤

0i, si + F⇤
0i; Fi

�
. (14)

For any particular model ty, the optimal response to the surprise si is ty
tq+tz+ty

, which is
dictated by Bayes’ rule and increasing in ty (the quality of managerial guidance). The
response to the surprise (represented by k) is a weighted average over the model space
by using the distorted distribution p̃

�
ty|F⇤

0i, si; Fi
�
, and therefore it is bounded between

0 and 1. In this representation, the pessimistic preference of analysts is specifically
captured by the following lemma.

Lemma 2 (Pessimism). Consider any F0
i > Fi and the likelihood ratio

L
�
ty
�
⌘

p̃
�
ty|F⇤

0i, si; F0
i
�

p̃
�
ty|F⇤

0i, si; Fi
� .

If the surprise si is positive, L
�
ty
�

decreases in ty; if it is negative, L
�
ty
�

increases in ty.

All proofs are collected in Appendix E. Suppose that the surprise si is positive. An
analyst i who contemplates a higher forecast F0

i would consider the positive surprise to
be less likely to be informative and assign a lower probability density for models with
a high ty in her distorted belief p̃. Therefore, k is decreasing in Fi. In contrast, suppose
that the surprise si is negative. An analyst i who contemplates a higher forecast would
consider the negative surprise to be more likely to be informative and therefore assign
a higher probability density to models with high ty in her distorted belief. Therefore,
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k is increasing in Fi.

As implied by Lemma 2, the right-hand side of Equation (12) always decreases in Fi.
The optimal forecast F⇤

i is the fixed point of Equation (12). The following proposition
summarizes the equilibrium existence and uniqueness of the forecasting problem.

Proposition 1 (Existence and Uniqueness). If analysts are ambiguity averse (l > 0), there
always exists a unique optimal forecast F⇤

i
�

F⇤
0i, si

�
that satisfies (12) and a unique optimal

response k⇤ (si) ⌘ k
�

F⇤
0i, si, F⇤

i
�

associated with it.

An interesting special case is nested in this framework: if analysts are ambigu-
ity neutral, there is no dependence of analyst i’s posterior belief p̃ on Fi. Bayes’ rule
dictates that the posterior distribution of ty only depends on the magnitude of the
surprise, but not its sign. Therefore, the response to surprises in managerial guidance
should always be symmetric.

4. Equilibrium Analysis

This section presents a set of equilibrium analyses corresponding to the empirical facts
documented in Section 2. We demonstrate that the two basic model mechanisms (un-
certainty in quality and aversion to uncertainty) and their interaction can help account
for those empirical patterns.

4.1. Asymmetry

We first characterize the impacts of ambiguity aversion on analysts’ asymmetric re-
sponses to negative and positive surprises in managerial guidance. To state this for-
mally, let a pair of surprises be

�
s�i , s+i

�
, such that s�i < 0 < s+i and s�i + s+i = 0.

Proposition 2. If analysts are ambiguity averse, forecast revisions in response to surprises are
asymmetric. Specifically,

�
k⇤
�
s�i
�
� k⇤

�
s+i
��

b � 0,

where the equality holds if and only if b = 0.

To illustrate this, consider the case where analysts are better off when the earnings
realization is high (i.e., b > 0). That is, analysts consider the news that suggests higher
realizations of earnings to be favorable.

Proposition 2 states that analysts would always be less responsive to positive sur-
prises (i.e., s+i , favorable news) than to negative surprises (i.e., s�i , unfavorable news).
The mechanism is as follows. In this model, analysts are uncertain about the quality
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of the information source and, therefore, need to assess its quality based on the news
itself. Given that favorable news improves analyst i’s expected utility, she would be-
have with more caution (due to her ambiguity-averse preferences) and “discount” the
quality of favorable news. Conversely, given that negative surprises or unfavorable
news reduce her expected utility, she would “over-count” its quality, i.e., assign a high
probability density to models with high quality ty. Therefore, analyst i responds to
negative surprises to a larger extent than to positive surprises of the same magnitude,
that is, k⇤

�
s�i
�

> k⇤
�
s+i
�
.

4.2. Nonmonotonicity

Next, we show that the model also features a nonmonotonic relationship between
forecast revisions and surprises. Two key take-away messages are as follows. First,
the nonmonotonicity does not rely on ambiguity aversion but instead on ambiguity
(uncertainty) in quality. Second, in fact, the nonmonotonicity disappears when the
degree of ambiguity aversion becomes extreme. Proposition 3 formalizes the former,
and proposition 4 characterizes the latter. To simultaneously capture both nonmono-
tonicity and asymmetry, neither ambiguity-neutral preferences nor extreme ambiguity
aversion is feasible.

Proposition 3. If analysts are ambiguity neutral (l = 0), the optimal forecast revision F⇤
i �

F⇤
0i increases in si conditional on surprise si being small in magnitude and decreases in si

conditional on surprise si being sufficiently large in magnitude. The forecast revision at the
individual level F⇤

i � F⇤
0i is always symmetric around the origin.

Given that the quality of guidance is uncertain, analyst i updates her belief through
two mechanisms. First, for any given quality ty, analyst i updates her belief about the
earnings upon receiving the guidance. This mechanism dictates that positive (nega-
tive) surprises raise (suppress) forecasts. Second, she also updates her belief about
the distribution of quality. When the surprise is large, Bayesian analysts will as-
sign a higher probability density to low qualities. That is, they tend to believe that
large surprises are of low quality. Crudely, this is because low-quality information
sources would have fatter tails and be more likely to generate large surprises. In other
words, the posterior distribution of information quality given a small surprise first-
order stochastically dominates the posterior distribution given a large surprise. There-
fore, this mechanism implies that forecast revisions can be less responsive to surprises
when they are larger.

For small enough surprises, the second mechanism (i.e., updating the distribution
of quality) is less consequential, and therefore forecast revisions increase in surprises.
For large enough surprises, the second mechanism dominates the first, and, as a result,
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(a) Ambiguity Neutral l = 0
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(b) Max-min l ! +•

si

FRi

(c) Ambiguity Aversion l > 0

Figure 4. Monotonicity and the degree of ambiguity aversion. Panel (a) illustrates the case where an-
alysts are ambiguity neutral. Forecast revisions are decreasing, increasing and decreasing in surprises.
Panel (b) illustrates the case where analysts have extreme degree of ambiguity aversion (l ! +•).
Note that b > 0. Forecast revisions are increasing in surprises and asymmetric. Panel (c) illustrates
the case where analysts’ ambiguity aversion is moderate. Both asymmetry and nonmonotonicity are
present.

forecast revisions decrease in surprises. Figure 4(a) illustrates this pattern that forecast
revisions decrease and increase and then decrease in surprises. The symmetry is trivial
given that analysts are Bayesian.

Now, we turn to the other polar cases: extreme ambiguity aversion (l ! +•) or
the classic max-min criterion.

Proposition 4. If analysts have extreme degree of ambiguity aversion (l ! +•), the optimal
forecast revision F⇤

i � F⇤
0i is increasing in surprise si.

When surprises are relatively small in magnitude, the Bayesian mechanism dictates
that forecast revisions increase in surprises (Proposition 3). Furthermore, the ambigu-
ity aversion mechanism also dictates an increasing relationship. Analyst i tends to
believe that negative surprises are of higher (lower) quality than positive surprises of
the same magnitude if b > 0 (b < 0). Given that the ambiguity aversion is extreme,
analysts believe that the quality of negative news is of the highest possible value and
that of positive news is of the lowest possible value if b > 0 and vice versa. Figure
4(b) illustrates the case where b > 0 and l ! +•. In this case, analyst i believes that
negative surprises are of the highest quality and positive surprises are of the lowest
quality. Therefore, forecast revisions increase in surprises with a flatter slope when
surprises are positive and with a steeper slope when surprises are negative.

When surprises are very large in magnitude, the Bayesian mechanism dictates that
forecast revisions decrease in surprises (Proposition 3). However, this is dominated
by the impact of extreme ambiguity aversion. Therefore, forecast revisions always
increase in surprises, despite the sign of b.
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In summary, the contrast of the two polar cases reveals (i) that ambiguity in guid-
ance quality gives rise to non-monotonicity in surprises and (ii) that aversion to such
ambiguity leads to asymmetric responses to negative and positive surprises. Our
model of finite ambiguity aversion lies in between. Figure 4(c) illustrates the relation-
ship between forecast revisions and surprises when the degree of ambiguity aversion
is moderate. The optimal forecast revision is not monotonically increasing, which re-
sembles the case of ambiguity neutrality. Nevertheless, it is also asymmetric, which
resembles the case of extreme ambiguity aversion.

4.3. Heterogeneous Overreaction: Theoretical Counterpart

The preceding two sub-sections characterize how forecast revisions respond to sur-
prises in our model and demonstrate its consistency with the data. In this section, we
offer a direct theoretical counterpart for the cross-sectional heterogeneous overreac-
tion pattern documented in Section 2.3.

We begin our investigation by constructing the FE-on-FR coefficients in Equation
(1) in the neighborhood of a particular surprise level. This construction is the theo-
retical counterpart of empirical coefficients in each running decile window shown in
Figure (2). It allows us to study how overreaction varies over surprise in the model
and directly map those model predictions to the data. Specifically, let counterpart of
the concerning coefficient be:

b̂1 (sm, e) ⌘ Cov (FEi, FRi|si 2 I (sm, e))
Var (FRi|si 2 I (sm, e))

.

The term b̂1 (sm, e) captures the FE-on-FR coefficient on an open interval I (sm, e),
where si is its middle point sm and the width is e, that is, I (sm, e) = (sm � e, sm + e).
Observe that when sm = 0 and e goes to •, b̂1 (sm, e) converges to the estimated coef-
ficient of the canonical FE-on-FR regression that characterizes average degree of over-
reaction.

We can further show that for sufficiently small e,

b̂1 (sm) ⌘ lim
e!0

b̂1 (sm, e) ⇡� 1 +
kRE

k (sm) + k0 (sm) sm| {z }
1st-order approx. of ∂FRi/∂si at si = sm

. (15)

where kRE denotes the responsiveness to guidance surprise in the benchmark model
with rational expectation, which is characterized by Bayes’ rule (see Equation (6)). The
derivation is relegated to Appendix E.

Note that the denominator on the right-hand side of Equation (15) represents the
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first-order approximation of the marginal effect of guidance surprise si on forecast
revisions FRi, evaluated at the midpoint of the interval I(sm, e), specifically si = sm,
when e is sufficiently small. It is important to highlight that it captures the relation
between forecast revisions and surprises around the point si = sm. In other words,
Equation (15) provides a theoretical mapping between the cross-sectional distribution
of FE-on-FR coefficients and the FR-on-Surprise relation.

To illustrate, consider a special case, in which forecast revisions are linear in sur-
prises: FRi = ksi with k representing the responsiveness to guidance surprise. It is
worth noting that a wide range of expectation formation theories exhibit this feature,
including noisy information model, diagnostic expectation, overconfidence, and par-
simonious forms of loss aversion. Linearity in expectation formation implies that

b̂1 (sm) = �1 + kRE/k,

with equality holds exactly. Analysts would overreact (or underreact) to guidance
surprises if and only if the responsiveness, represented by k, is larger (or smaller) than
kRE. In other words, when forecast revisions to surprises are state-independent, the
degree of overreaction (or underreaction) is shown to be homogeneous.

In our model, the optimal response k (si) is state dependent. The cross-sectional
pattern of heterogeneous overreaction in fact inherits the properties of non-monotonicity
and asymmetry displayed in the FR-on-Surprise relation. The following proposition
summarizes the results.

Proposition 5. Suppose analysts are ambiguity averse (i.e., l > 0) and prefer better earnings
outcomes (i.e., b > 0).

i. Analysts’ overreaction (or underreaction) to guidance surprise is asymmetric with stronger
overreaction (or weaker underreaction) for negative surprises, when surprises are suffi-
ciently small in size:

lim
si!0

db̂1 (si)
dsi

> 0,

where b̂1 (si) refers to the FE-on-FR coefficient around the neighborhood of si.

ii. Analysts’ overreaction (or underreaction) is weaker (or stronger) when guidance surprise
is extreme than when it is moderate:

b̂1 (0) < lim
|si|!•

b̂1 (si) .

Note that the term limsi!0 db̂1 (si) /dsi reduces to zero if analysts’ overreaction
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(or underreaction) to guidance surprise is symmetric. Furthermore, item (ii) in this
proposition is a sufficient condition for the non-monotonicity pattern.

5. Discussions

In this section, we address a range of relevant issues concerning our theory. In Sec-
tion 5.1, we address the issue of whether our mechanism is quantitatively relevant by
structurally estimating this model and comparing it with the estimated pattern found
in the data. In Section 5.2, we test auxiliary predictions derived from our model, which
further corroborates the mechanism proposed. In Section 5.3, we also consider various
alternative hypotheses and show that the new empirical patterns documented in this
paper cannot be accounted for by existing theories.

5.1. Quantitative Analysis

While we have demonstrated that the qualitative patterns of asymmetry and non-
monotonicity in our model align with those observed in the data, a question arises
about the model’s quantitative informativeness regarding the empirical findings. Ad-
ditionally, a set of parameters characterizing the utility function and ambiguity aver-
sion play a crucial role in determining the model’s qualitative properties. However,
these parameters remain unobservable.

To address these two issues, we proceed to structurally estimate this model, using
the simulated method of moments to match the relationship between forecast revi-
sions and surprises that is empirically estimated in Section 2.4.13 Then the estimated
model is interpreted and used to revisit the pattern of heterogeneous overreaction
(documented in sections 2.2 and 2.3) and inform the key parameters. While Appendix
C provides details of the estimation, this section summarizes the key findings.

Unobservable parameters The degree of ambiguity aversion is the key to our model,
and its value is estimated to be l = 449.9. On the one hand, it is consistent with our
model prediction that neither extreme ambiguity aversion (l ! +•) nor ambiguity-
neutral preferences (l = 0) would be realistic for analysts in this setting. It is an
important finding that justifies the use of smooth model of ambiguity aversion. On
the other hand, it is worth noting that, with the reduced form utility specification, the
estimated l is only in proportion to the the actual degree of ambiguity aversion and it
can be inflated by a constant shifter in utility function.14

13In the benchmark model, for simplicity, we do not allow analysts to acquire private information
after they release their initial forecasts. Technical Appendix provides full characterization of the model
by allowing for private information. In this structurally estimated model, we also allow for private
information.

14To be specific, consider a model in which the degree of ambiguity aversion is l̂ and utility function
is U (Fi, q) = �c (Fi � q)2 � cbq, for some positive shifter c > 0. It can be shown that our model

22



−0.14

−0.25

−0.21

−0.15

−0.10

−0.08 −0.07 −0.08

−0.03

0.02

−
0
.3

0
−

0
.2

0
−

0
.1

0
0
.0

0
0
.1

0

b
1

0 1 2 3 4 5 6 7 8 9 10

Window Ranks

Figure 5. Overreaction by surprise deciles with simulated data. Using simulated data, we report the
estimated coefficients of the FE-on-FR regressions b1 for each running decile window, and we plot them
against the window rank. Running decile window j covers decile j � 1, j, and j + 1 if j 6= 1 or j 6= 10;
running decile window 1 covers deciles 1 and 2, and running decile window 10 covers deciles 9 and 10.

Furthermore, the parameter b that characterizes the utility function is estimated to
be positive, i.e., b = 1.37, indicating that analysts are likely to care about the earn-
ings performance of firms that they cover. Prior empirical studies suggest that it is
plausible that b is positive. There are multiple channels through which financial ana-
lysts would benefit from better earnings performance of the firms that they cover and
therefore view positive surprises in managerial guidance as favorable. For example,
stronger earnings performance can be rewarding to financial analysts who make earn-
ings forecasts and recommendations for the underlying stocks through the trading
commissions channel.15

Quantitative relevancy To examine whether our estimated model can produce the

is isomorphic to it on condition that l = cl̂. That is, a large c would inflate the estimated l in our
model. The range for the estimated degree of ambiguity aversion is quite large in the literature and
is sensitive to the model setup and estimation method. For example, based on asset pricing evidence,
Gallant, Jahan-Parvar, and Liu (2015) estimated a degree of relative ambiguity aversion at about 66,
while Collard, Mukerji, Sheppard, and Tallon (2018) calibrated the degree of ambiguity aversion to be
around 12.

15Financial analysts aim to boost stock trading and generate trading commissions for their broker-
age houses. Positive recommendations based on earnings expectations tend to increase trading vol-
ume, benefiting the analysts. Studies like Barber and Odean (2008) show that investors are inclined to
follow these positive recommendations, leading to higher trading activity. Additionally, research by
Groysberg, Healy, and Maber (2011) and Brown, Call, Clement, and Sharp (2015) reveals that sell-side
analysts’ compensation is linked to underwriting business and trading commissions of the stocks they
cover directly. These analysts often focus on firms with promising earnings prospects (McNichols and
O’Brien 1997; Das, Guo, and Zhang 2006), which in turn generate underwriting business and trading
commissions for their brokerage houses (Alford and Berger 1999; Niehaus and Zhang 2010).
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pattern of heterogeneous overreaction found in the data (in Section 2.3), we utilize
the simulated data and construct the surprises observable to the econometrician in the
same way as we do with the empirical data. We rank surprises from the most negative
to the most positive and sort them into deciles, labelling them from 1 to 10 according
to the decile rank. We further define a running decile window j, such that (1) the
window j covers decile j � 1, j, and j + 1 if j 6= 1 or j 6= 10; (2) running decile window
1 covers deciles 1 and 2; and (3) running decile window 10 covers deciles 9 and 10. For
each subsample, we re-estimate Equation (1). We plot the estimated coefficients and
confidence intervals in Figure 5 against their window ranks. In the simulated data,
we find that the pattern of heterogeneous overreaction is U-shaped and skewed to the
left, which is consistent with our model predictions in Section 4.3 and also close to the
pattern in the empirical data (Figure 2).

5.2. Auxiliary Predictions

In this paper, we provide a theory about how the expectation is formed when fore-
casters are not certain of the quality of the information that they receive. Our theory
organizes a number of facts that we document with the earnings forecast data. In this
section, we further show that our theory provides two auxiliary predictions that are
consistent with the earnings forecast data.

Pessimistic bias. If the analysts in our sample are indeed ambiguity averse, then
there should be a pessimistic bias in their beliefs. That is because ambiguity averse an-
alysts react to negative guidance surprises more strongly than positive ones, since they
are ambiguous about the precision of manager guidance. The revised forecasts, on av-
erage, over-represent negative guidance surprises, leading to a systematic pessimistic
bias. The following proposition summarizes the result:

Proposition 6. In this model, the optimal initial forecasts F⇤
i0 are unbiased, but the revised

forecasts F⇤
i are pessimistically biased, which leads to systematically positive forecast errors:

E [FE0i] ⌘ E [q � F⇤
0i] = 0; E [FEi] ⌘ E [q � F⇤

i ] > 0.

where E [·] refers to the unconditional expectation with respect to the objective data generating
process.

Bias in forecast errors can be obtained by regressing forecast errors on a constant
and examining the estimated coefficient. To address the heterogeneity in the data gen-
erating process across firms, we run the aforementioned regression on a firm-by-firm
basis and report the distribution of estimated coefficients. To ensure an adequate num-
ber of observations for each firm, we focus on a subset of firms that have provided
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Table 2. Forecast Error on Constant: Median Coefficients (⇥100 percent)

Firm-by-Firm Forecast Error on Constant Regressions

Initial Forecasts Revised Forecasts

Median -0.040 0.040

(p 2.5, p 97.5) (-0.085 0.011) (0.019 0.057 )
(p 5.0, p 95.0) (-0.067 0.06) (0.022 0.056)

No. of firms. 786 786
We report the 5% (row 2) and 10% (row 3) bootstrapped confidence intervals, the
boundaries of which are the 2.5, 5.0, 95.0, and 97.5 percentiles of the estimated
median coefficients out of the 500 bootstrap samples. Following Bordalo, Gen-
naioli, Ma, and Shleifer (2020), these samples are obtained from block bootstrap
the panel using blocks of 30 quarters.

earnings guidance for at least 12 consecutive quarters during our sample period. Table
2 presents the median estimates of forecast errors obtained from these firm-specific re-
gressions, along with confidence intervals generated through block bootstrapping the
panel data.

Interestingly, in column (1), the median estimate for initial forecasts is negative
but insignificant, as indicated by the bootstrapped confidence interval. Column (2)
presents the median estimate for revised forecasts, which is positive and significant.
These results suggest that initial forecasts are unbiased, while revised forecasts exhibit
a systematic pessimistic bias. This pattern aligns with the predictions of our theory.

Heterogeneity in quality. In this paper, our underlying assumption is that the qual-
ity of firms’ earnings guidance is uncertain. However, this uncertainty likely varies
across firms for analysts. Established firms with good reputations may offer high-
quality managerial guidance, leading analysts to have minimal doubts about its qual-
ity. For these firms with low or no uncertainty in earnings guidance quality, our theory
suggests that analysts’ forecast revisions should exhibit a close-to-linear relationship
with guidance surprises. In other words, the connection is expected to be both mono-
tonic and symmetric. This is because, once the uncertainty in quality is eliminated,
analysts update their beliefs solely based on the guidance and do not need to reassess
the quality.

To test this prediction using our data, a conceptual challenge arises: the perceived
uncertainty in guidance quality is not observable and, therefore, not measurable. To
overcome this challenge, we proxy for it using the observed average quality in the
data, specifically, the ex post variance of the differences between guidance and actual
earnings. Our assumption is that the perceived uncertainty in quality is low if the
observed average quality is high.
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Figure 6. Nonparametric estimation using a subsample with the top 5% of firms in terms of guidance
precision. Panel (a) illustrates the relationship between forecast revisions and surprises in managerial
guidance that is nonparametrically estimated using the Epanechnikov kernel and the third degree of
the smoothing polynomial. The shaded areas represent the 95% confidence intervals for the respective
estimations. Panel (b) illustrates the derivative of forecast revisions with respect to surprises.

We construct a subset comprising firms providing highly precise earnings guid-
ance, indicating low uncertainty about their quality. Initially, we rank firms based on
their average guidance quality within our full sample of 110,895 individual analyst
forecasts, encompassing 16,241 firm-quarter observations. To be consistent with pre-
vious empirical exercises, we then trim realized earnings and management guidance
at the 2.5% and 97.5% percentiles, yielding 15,427 firm-quarter observations. By re-
gressing management guidance on the same-quarter realized earnings, controlling for
year-quarter fixed effects, we obtain residuals. Firms present for fewer than 5 quarters
are excluded, resulting in a reduced sample of 1,035 firms. Next, we compute standard
deviations of the residuals for each firm and sort them accordingly. We concentrate on
the top 5% of firms exhibiting the highest average guidance quality, forming a sub-
sample of 2,521 individual analyst forecast revisions and guidance surprises.

Using this subsample, we re-estimate the relationship between forecast revisions
and guidance surprises by following the same procedure as detailed in section 2.4.
The results are shown in Figure 6(a). The relationship between forecast revisions and
surprises is almost linear, unless the surprises are relatively very large and positive.
The derivative estimated and shown in Figure 6(b) is close to a constant when the
surprises are not too large, thus contrasting with the derivative estimated using the
full sample (shown in Figure 3(b)). Additionally, the asymmetry measure X, computed
using Equation (2), is found to be -0.01. This value, close to zero, indicates a nearly
symmetrical pattern in expectation formation when guidance quality has low or no
uncertainty.
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5.3. Alternative Hypotheses

In this paper, we provide a simple unified framework to account for new facts re-
garding how analysts update their forecasts or form expectations. It is important that
our estimated model can generate the skewed U-shaped pattern of overreaction that
is consistent with the data. This paper is the first that discovers and rationalizes this
set of facts in the literature of expectation formation. Nevertheless, we acknowledge
that there could be other mechanisms that simultaneously contribute to the observed
patterns. We examine several likely candidates in sequence, which helps differentiate
our theory from those in the existing literature. This section provides a summary of
our investigations and the details are relegated to Appendix D.

Diagnostic expectations and over-confidence. Two related theories are commonly
utilized to explain the observed overreaction patterns present in SPF data. Bordalo,
Gennaioli, and Shleifer (2018) presents the theory of diagnostic expectations, a non-
Bayesian model of belief formation that formalizes the concept of the representative-
ness heuristic (Kahneman and Tversky 1972): forecasters overweight states that are
more likely in light of the arrival of new signals and consequently overreact to new
information when forming their expectations. Broer and Kohlhas (2022) show that
overconfidence can provide a rationalization for overreaction, i.e., forecasters subjec-
tively believe new signals to be more accurate than they actually are. Once we allow
for this set of behavioral features in the noisy information benchmark specified in Sec-
tion 3.2, over-reaction to new information emerges. However, forecast revisions are
still linear in surprises and the degree of over-reaction is constant and does not de-
pend on realizations of surprises. This set of model predictions are inconsistent with
the data.

Loss Aversion. Another plausible conjecture is that analysts exhibit loss aversion, in-
stead of ambiguity aversion. To explore this possibility, we consider two widely used
variants of loss aversion in the literature. Capistrán and Timmermann (2009) propose
a parsimonious setup with analytical solutions, while Elliott, Komunjer, and Timmer-
mann (2008) and Elliott and Timmermann (2008) construct a flexible setup with greater
quantitative potential. In Appendix D.2, we demonstrate that regardless of the spec-
ifications for loss aversion, the FR-on-Surprise relation remains globally monotonic,
whether it is linear or nonlinear. This is inconsistent with the observed non-monotonic
FR-on-Surprise relation detailed in Section 2.4.

Dynamic Models. Using the Survey of Professional Forecasters (SPF), Kohlhas and
Walther (2021) show that forecasters’ expectations overreact to recent realizations of
the output growth and therefore display a pattern of extrapolation. To explain this,
they propose a model of “asymmetric attention”, where Bayesian agents pay more
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attention to the procyclical component and less attention to the countercyclical com-
ponent. Afrouzi, Kwon, Landier, Ma, and Thesmar (2022) design an experiment where
participants who observe a large number of past realizations of a given AR(1) process
make forecasts about future realizations. They show a pattern of overreaction, i.e., the
perceived persistence of the AR(1) process is larger than the actual persistence. They
propose a “top-of-mind”model, where agents rely excessively on or overreact to the
recent realizations, relative to the rational benchmark.

In our empirical setting, both initial and updated forecasts are made within the
same period, which encompass the earnings guidance for the current period. We use
the variations of surprises contained in the earnings guidance across analysts to ex-
plore impacts of surprises’ characteristics on forecast revisions. Therefore, dynamic
models are not informative about the cross-sectional heterogeneity of overreaction.
Appendix D.3 provides evidence for illustrating this particular finding.

Agency issues. This empirical setting is new to the literature and informative about
expectation formation. However, one may worry about the role of agency issues be-
tween analysts and the managerial teams who might have incentives to misrepresent
information. In the literature, it is often shown that managers spin information in self-
serving ways to cater to investors and analysts (e.g. Solomon 2012). Given managerial
guidance is an important information protocol provided by managers, it is reasonable
to conjecture that managers have an incentive to bias their guidance positively, which
makes positive managerial guidance less reliable than negative managerial guidance.
This skewed information reliability, if exists, may lead to the asymmetry we docu-
mented. This conjecture is empirically testable. In Appendix D.4, we present evidence
that is against the conjecture that positive guidance is less reliable. The managerial
motives can be complex, often unobservable and unpredictable, which constitutes a
source for guidance quality to be unreliable. In fact, that is the key motivation for our
assumption that guidance quality is uncertain.

The literature also documents that managers could have incentives to manage
earnings expectations downwards before the earnings release to make it beatable (e.g.,
Matsumoto 2002; Cotter, Tuna, and Wysocki 2006; Johnson, Kim, and So 2019). Given
that one may imagine that more negatively surprised analysts could adjust their fore-
casts by more to ensure that the firms beat their earnings forecasts. To investigate
this possibility, we rely on Johnson, Kim, and So (2019) who constructed the expec-
tation management index (EMI) that captures the extent to which firms manage in-
vestors’ earnings expectations. We add EMI as an additional control in our main re-
gressions (reported by Table 1) and in specifications presented by Figure 2. If such a
walk-down-to-beatable mechanism is crucial for our investigations, the estimated co-
efficients from our regressions should be greatly affected in terms of magnitude and
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significance. However, we find that all our estimations only change marginally at the
best (available upon request), which suggests that our findings are unlikely driven
only by managerial strategic guidance.

6. Conclusion

This paper documents a set of cross-sectional facts concerning expectation formation
using firm-level earnings forecast and managerial guidance data: the overreaction to
information is stronger for unfavorable surprises and weaker for larger surprises, and
forecast revisions are asymmetric in surprises and nonmonotonic. We present a model
of information uncertainty and smoothed ambiguity aversion to account for these
facts. This model qualitatively differs from models with extreme ambiguity aversion
or those with ambiguity-neutral agents. Our work adds to the literature that studies
expectation formation by documenting new facts and providing new theory.

The empirical setting has unique advantages and will be useful for exploiting other
aspects of expectation formation. First, analysts have dispersed information before
receiving the guidance, summarized by their initial forecasts. The two features com-
bined imply that the same managerial guidance delivers different surprises to analysts
with different initial forecasts. The variations in surprises at the analyst level enable us
to explore the cross-sectional features of overreaction. Second, in contrast to studies
using the Survey of Professional Forecasters, this setting is static: we utilize within-
quarter variations in surprises among analysts to uncover how analysts update their
forecasts. Therefore, it is cleaner for exploring cross-sectional variations in expectation
formation.
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Appendix

A. Data

A.1. Sample Construction

First, we retrieve all quarterly earnings guidance from the I/B/E/S Guidance Detail
file issued for the current quarter by firm management from 1994 to 2017. The sam-
ple starts in 1994 as this is the first year when the I/B/E/S systematically collected
information on managerial guidance.16 We only keep closed-ended managerial guid-
ance, including point and range forecasts, to quantify and compare them with ana-
lysts’ forecasts. Consistent with the literature, the value of the guidance is set to equal
the midpoint if it is a range forecast.

Second, given that our focus is on analysts’ belief-updating process upon receiving
new information from firm management, we exclude all managerial guidance bun-
dled with earnings announcements.17 We only consider unbundled guidance, partly
because it is nearly impossible to distinguish whether a forecast revision reflects infor-
mation gained from forward-looking managerial guidance or from the realized prior
earnings when both of them occur simultaneously.

Third, for firm-quarters in which managers provide multiple rounds of earnings
guidance (at different dates during the period from two days after the prior quarter
earnings announcement date and the current quarter earnings announcement date),
we only retain the latest guidance before the current quarter earnings announcement.18

Fourth, we then obtain individual analysts’ EPS forecasts for a firm-quarter from
the I/B/E/S Estimates (the Unadjusted Detail History file) and match them with the
I/B/E/S Guidance data using the same firm identifier (I/B/E/S ticker). Because earn-
ings projections in the I/B/E/S Guidance Detail file are provided on a split-adjusted
basis, we manually split-adjust both individual analysts’ forecasts and managerial pro-
jections so that they are comparable with the ultimate realized earnings announced for

16The coverage bias in the management forecast data documented by Chuk, Matsumoto, and Miller
(2013) is less of a concern in this particular setting. First, we obtain management forecast data from the
I/B/E/S Guidance Detail file rather than the problematic First Call CIG database. Second, the focus of
this paper is to understand how analysts update their beliefs given new information, i.e., management
guidance in our setting. While the decision on the issuance of management guidance itself is also an
important research question, it is not the focus of this paper. Third, the fact that we require at least
one analyst issuing forecasts for a firm alleviates the concern that guidance data are more likely to be
collected for firms with analyst coverage. Fourth, our results are robust to starting the sample period in
1998, after which the coverage bias has been shown to be relatively small.

17Bundled guidance is defined as the managerial forecasts issued within 2 days around the actual
earnings announcement date (Rogers and Van Buskirk 2013).

18However, our results are not sensitive to this specific choice and are qualitatively unchanged if
we either keep the earliest guidance issued during a quarter or discard all firm-quarters with multiple
guidance.
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the forecasted quarter. The realized earnings data are also obtained from the I/B/E/S
Estimates. Following a standard practice in the literature, we deflate the EPS estimates
by the stock price at the beginning of the quarter using data retrieved from the CRSP.19

To avoid the small price deflator problem that may distort the distribution, we exclude
observations with a stock price of less than one dollar.

Finally, in these data, the initial analyst forecasts are defined and constructed by
individual analyst forecasts that are issued after the prior quarter earnings announce-
ment date and are the most updated forecasts before the earnings guidance. The re-
vised analyst forecasts are defined as those issued by the same set of analysts on or
immediately after the earnings guidance date. For analysts who initially offer fore-
casts but provide no forecast revisions until the earnings announcement, we assume
that their revised forecasts remain the same as their initial forecasts, a practice consis-
tent with prior literature (Feng and McVay 2010; Maslar, Serfling, and Shaikh 2021).

Suppose that a typical fiscal quarter ends at Qt, and its realized earnings are usually
announced at At after the end of the quarter Qt (The Securities and Exchange Com-
mission requires public firms to file their financial statements within 45 days after the
end of the fiscal quarter). Similarly, the earnings announcement date At�1 for quarter
t� 1 would also happen after Qt�1. In this paper, we retrieve earnings guidance that is
issued by firm management on any date between At�1 and At. Because an increasing
number of firms bundle their earnings projections for quarter t with the announce-
ment of the realized earnings for quarter t � 1, we further require the guidance to be
unbundled (as justified earlier). That is, we only consider guidances issued between
two dates, i.e., At�1 and At. Given earnings guidance Gt, we can accordingly identify
the sequence of analysts’ earnings forecasts for the same quarter. We define analysts’
forecasts that are issued after At�1 but at the latest before Gt as their initial forecast
and the forecast that is issued on or after Gt but before At as their revised forecast. As
noted above, for analysts who provide an initial forecast but do not revise, we assume
that the revised forecast remains the same as the initial forecast. There are two excep-
tions to this general timing. First, it might be the case that Gt lies between Qt and At,
in which case we term the guidance a preannouncement following the convention in
the literature. Second, firm management can offer more than one earnings guidance,
and therefore, Gt may appear multiple times during the period. In this case, we only
retain the latest guidance before At.

19We provide a robustness check for our empirical results without deflating the EPS estimates with
stock prices and show that this practice does not affect our findings.
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A.2. Summary of Statistics

Table A1. Summary of Statistics

(1) (2) (3) (4) (5) (6)
N mean sd p25 p50 p75

Initial forecasts 110,895 0.0120 0.0129 0.0070 0.0123 0.0180
Revised forecasts 110,895 0.0104 0.0149 0.0057 0.0113 0.0173
Forecast revision 110,895 -0.0016 0.0055 -0.0017 0.0000 0.0000
Forecast errors 110,895 -0.0000 0.0047 0.0000 0.0003 0.0011
Surprise 110,895 -0.0040 0.0171 -0.0062 -0.0012 0.0003

Managerial guidance 16,241 0.0067 0.0293 0.0027 0.0089 0.0160
Earnings 16,241 0.0089 0.0197 0.0044 0.0112 0.0177

B. Robustness

B.1. Robustness: Overreaction

Table A2. Forecast Error on Forecast Revision: Samples

Outcome Variable: Forecast Error FEi

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Excl Pre-anc Excl Multiple Excl Both Excl Pre-anc Excl Multiple Excl Both

(1) (2) (3) (4) (5) (6)

FRi -0.0731*** -0.1614*** -0.1579*** -0.0684*** -0.1584*** -0.1590***
(0.0272) (0.0210) (0.0491) (0.0224) (0.0165) (0.0377)

Firm FEs YES YES YES YES YES YES

Obs. 51,692 47,311 19,162 51,692 47,311 19,162
Adj R-sq. 0.2380 0.2856 0.3348 0.2344 0.2636 0.3179
The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).*** p<0.01,
** p<0.05, * p<0.1

Subsamples. The result in column (1) of Table A2 is based on a sample excluding
all firm-quarters with pre-announcement guidance, which is defined as the guidance
issued between firms’ fiscal quarter-end and the earnings announcement date for the
quarter. The result in column (2) of Table A2 is based on a sample excluding all firm-
quarters with multiple guidances. The result in column (3) of Table A2 is based on a
sample excluding all firm-quarters with either pre-announcement guidance or multi-
ple guidances. To ensure that our results are not driven by outliers, we winsorize FEijt

and FRijt at the 2.5% and 97.5% of their respective distributions and re-estimate Equa-
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Table A3. Forecast Error on Forecast Revision: Trimming Outliers

Outcome Variable: Forecast Error FEi

Trimmed at 1% and 99% Trimmed at 2.5% and 97.5%

Full Excl Pre-anc Excl Multiple Excl Both Full Excl Pre-anc Excl Multiple Excl Both

(1) (2) (3) (4) (5) (6) (7) (8)

FRi -0.1023*** -0.0903*** -0.1694*** -0.1890*** -0.0836*** -0.0709*** -0.1537*** -0.1641***
(0.0107) (0.0217) (0.0133) (0.0299) (0.0083) (0.0136) (0.0102) (0.0186)

Firm FEs YES YES YES YES YES YES YES YES

Obs. 106,714 50,099 44,667 18,303 100,577 47,559 41,149 17,020
Adj R-sq. 0.1880 0.2340 0.2577 0.3239 0.1722 0.2241 0.2372 0.2918
The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).*** p<0.01, ** p<0.05, * p<0.1

Table A4. Forecast Error on Forecast Revision: Median Coefficients

Firm-by-Firm Forecast Error on Forecast Revision Regressions

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Baseline Unscaled Baseline Unscaled

(1) (2) (3) (4)

Median -0.1616 -0.1747 -0.1647 -0.1612

(p 2.5, p 97.5) (-0.2256, -0.1456) (-0.2396, -0.1617 ) (-0.2281, -0.1429 ) (-0.2244, -0.1519)
(p 5.0, p 95.0) (-0.2173, -0.1483) (-0.2317, -0.1633) (-0.2107, -0.1477) (-0.2172, -0.1537)

No. of firms. 2849 2849 2849 2849
We report the 5% (row 2) and 10% (row 3) bootstrapped confidence intervals, the boundaries of
which are the 2.5, 5.0, 95.0, and 97.5 percentiles of the estimated median coefficients out of the
500 bootstrap samples. Following Bordalo, Gennaioli, Ma, and Shleifer (2020), these samples are
obtained from block bootstrap the panel using blocks of 30 quarters.

tion (1). The results for the corresponding subsamples are reported in column (4), (5)
and (6).

Trimming Outliers. In the main text, we estimate Equation (1) with winsorized data
to mitigate the influence of outlier observations. In this Appendix, we re-estimate
Equation (1) with trimmed data and examine the robustness of our results reported
in the main text. The corresponding results are summarized in Table A3. All results
are robust, thus suggesting that our results are not sensitive to the way in which we
handle outliers.

Nickel Bias. In a dynamic panel, the presence of firm fixed effects may raise con-
cerns about "Nickel bias." To address this issue, we follow Bordalo, Gennaioli, Ma,
and Shleifer (2020) and conduct the FE-on-FR regression on a firm-by-firm basis. We
report the median coefficient from the distribution of b1 estimates. The corresponding
results are summarized in Table A4. The median coefficient from the firm-by-firm re-
gressions aligns with that of the pooled regression with firm fixed effects, mitigating
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Table A5. Forecast Error on Forecast Revision: Analyst Fixed Effects

Outcome Variable: Forecast Error FEi

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Baseline Control Unscaled Baseline Control Unscaled

(1) (2) (3) (4) (5) (6)

FRi -0.0876*** -0.0877*** -0.0875*** -0.0836*** -0.0835*** -0.0696***
(0.0141) (0.0141) (0.0120) (0.0115) (0.0115) (0.0097)

Earnings of the Last Quarter 0.0003 -0.0020
(0.0071) (0.0050)

Analyst FEs YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES

Obs. 110,895 110,895 110,895 110,895 110,895 110,895
Adj. R-sq 0.2355 0.2354 0.2075 0.2202 0.2203 0.2125
The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).***
p<0.01, ** p<0.05, * p<0.1

concerns about Nickel bias in identifying the average overreaction.

Analyst Fixed Effects. To mitigate concerns regarding potential impacts of time-
invariant analyst characteristics, we incorporate additional controls for analyst fixed
effects in the estimation of Equation (1). The summarized results in Table A5 remain
robust, indicating that our findings are not sensitive to analyst fixed effects.

B.2. Robustness: Heterogeneous Overreaction

Heterogeneous Overreaction with Trimming 2% Outlier observations.
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Figure A1. Heterogeneous Overreaction, Trimming 2% Outliers. The estimated coefficients of the FE-
on-FR regressions b1 and 95% confidence interval for each running decile window is plotted against the
window rank. A running decile window j covers decile j � 1, j, and j + 1 if j 6= 1 or j 6= 9; the running
decile window 1 covers deciles 1 and 2 and the running decile window 10 covers deciles 9 and 10.

5



Heterogeneous Overreaction for Each Decile of Surprises.
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Figure A2. Heterogeneous Overreaction. The estimated coefficients of the FE-on-FR regressions b1 and
95% confidence interval for each decile of surprises, without using running windows.

B.3. Robustness: Forecast Revisions and Surprises

One valid concern is that the decreasing arms of the estimated relationship might be
driven by a small number of observations in the tails. Ultimately, the confidence inter-
vals become very wide when the surprises are relatively large in magnitude. However,
we find that this is not the case. In our baseline setup, there are 3,932 observations to
the left of the trough and 2,218 observations to the right of the peak, which account
for close to 6% of the total observations used in this estimation. Given the number of
observations utilized, this concern is alleviated.

Another potential issue is that whether to offer earnings guidance could be strategi-
cally chosen by firms, which could affect our estimations. First, this is unlikely because
firms do not make decisions about whether they disclose the earnings guidance on a
quarterly basis and typically continue to provide earnings guidance for an extended
period of time (Chen, Matsumoto, and Rajgopal 2011). Second, we construct a sub-
sample in which we only include earnings forecasts conditional on firms (whose earn-
ings are being forecasted) having to release earnings guidance for at least 12 consecu-
tive quarters during our sample period.20 We nonparametrically re-estimate the rela-

20Based on the initial full sample of management guidance, we select a quarterly management guid-
ance for our subsample if it lies in any series of at least 12 consecutive quarters where managers provide
earnings forecasts in each quarter. For example, the guidance issued in 2012Q4 is selected if it is in a
series of 12 consecutive quarters from 2011Q1 to 2013Q4 with management guidance. The subsample
consists of 49,116 observations with 5,601 firm-quarters. We also vary the threshold for the number of
consecutive quarters, such as 8 and 16. The results are rather similar.
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Figure A3. The figure illustrates the relationship between forecast revisions and surprises in managerial
guidances, both of which are trimmed at 2.5% and 97.5%. The relation is non-parametrically estimated
using the Epanechnikov kernel and the third degree of the polynomial smooth. Panel (a) reports the esti-
mation for the subsample that only includes earnings forecasts on condition that firms release earnings
guidances more than 12 consecutive quarters during our sample period. Panel (b) reports the estima-
tion for the subsample that excludes observations during the financial crisis. In both cases, the forecast
revision is decreasing, increasing and decreasing and asymmetric around the origin.

tionship between forecast revisions and surprises following the procedure described
above. The results are presented in Panel (a) of Figure A3. They are rather similar to
those obtained using the full sample, and the two key characteristics are even more
pronounced. The calculated asymmetry measure X is 0.23 (see Equation (2)). This
implies that, on average, unfavorable surprises result in revisions that are 23% higher
than revisions for favorable surprises. Therefore, the concern of strategic disclosure is
inconsequential for our findings.

Our data cover the period of the 2007-2009 financial crisis, and it is not unlikely that
financial market participants behaved abnormally during that period, which could
affect the relationship in which we are interested. To investigate this possibility, we
remove the data from 2007 to 2009, i.e., the financial crisis period, and re-estimate the
relationship. The results are presented in Panel (b) of Figure A3, which are very similar
to those obtained by using the full sample.
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C. Quantitative Analysis

We provide the details of our quantitative analysis in this section. In the benchmark
model presented in the main text, we do not consider any private information avail-
able to analysts, since it would not affect our analytical results qualitatively. Technical
Appendix provides the characterization of the model with such unobservable private
information. In our quantitative analysis, we intend to directly relate the relation-
ship characterized in our model (Section 3) to that in the data (Section 2.3 and 2.4).
Therefore, we explicitly model the unobservable private information. Specifically, we
assume analyst i is endowed with private information xi after releasing her initial fore-
cast:

xi = q + #i; #i ⇠ N (0, 1/tx) . (A1)

where tx refers to the precision of private information xi. Note that in our quantita-
tive analysis, we construct and work with surprises observable to the econometrician
from our simulated data and estimate the relationship between forecast revisions and
surprises in the same way as we do with the data.

Our model is fully specified by two sets of parameters and one distribution. First,
two parameters characterize the preferences of analysts, i.e., ambiguity aversion l,
and analysts’ attitude toward earnings b. Second, there is a set of volatilities, i.e., the
objective volatility of earnings sq, the objective volatility of managerial guidance sY,
the volatility of initial endowed information about earnings before the initial forecast
sz, and the volatility of private information sx. Third, the analysts’ prior belief about
guidance quality p

�
ty
�

defined in Section 3.1 also needs to be specified. We assume
that the ratio d ⌘ ty/(tq + tz + tx + ty) is a uniform distribution over [L, U], where
0  L < U  1. The advantage of this transformation is that we can entertain the pos-
sibility that ty is very large, without dealing with a very wide support for ty, which
economizes our computation. The upper bound U (lower bound L) regulates the per-
ceived largest (smallest) possible precision for managerial guidance.

To estimate the set of parameters Q = {l, b, L, U, sq, sx, sY, sz}, we follow Cher-
nozhukov and Hong (2003) in computing Laplace type estimators (LTE) with an MCMC
approach, and the “distance” between the empirical and simulated revision-surprise
relationships is constructed in the fashion of the method of simulated moments.

To define the distance, we first choose N = 50 equally spaced points for surprises
between [�0.025, 0.030], within which the empirical relationship (nonparametrically
estimated in section 2.4) decrease, increase and then decrease. Then, we derive the
corresponding values of forecast revisions from the estimated revision-surprise rela-
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Table A6. Targeted Moments of FR-on-Surprise Relation

Surp FR Surp FR Surp FR Surp FR Surp FR

-0.02500 0.00004 -0.01378 -0.00313 -0.00255 -0.00098 0.00867 0.00207 0.01990 0.00155
-0.02388 -0.00000 -0.01265 -0.00325 -0.00143 -0.00054 0.00980 0.00214 0.02102 0.00140
-0.02276 -0.00015 -0.01153 -0.00330 -0.00031 -0.00011 0.01092 0.00219 0.02214 0.00128
-0.02163 -0.00044 -0.01041 -0.00323 0.00082 0.00031 0.01204 0.00220 0.02327 0.00118
-0.02051 -0.00082 -0.00929 -0.00307 0.00194 0.00068 0.01316 0.00218 0.02439 0.00110
-0.01939 -0.00126 -0.00816 -0.00286 0.00306 0.00102 0.01429 0.00214 0.02551 0.00099
-0.01827 -0.00175 -0.00704 -0.00258 0.00418 0.00132 0.01541 0.00207 0.02663 0.00085
-0.01714 -0.00220 -0.00592 -0.00222 0.00531 0.00157 0.01653 0.00196 0.02776 0.00068
-0.01602 -0.00259 -0.00480 -0.00184 0.00643 0.00178 0.01765 0.00184 0.02888 0.00050
-0.01490 -0.00293 -0.00367 -0.00142 0.00755 0.00195 0.01878 0.00170 0.03000 0.00036

Table A7. Estimated Model Parameters

Mean 90% HPDI 95% HPDI

l 449.9 (411.9, 504.0) (379.5, 504.2)
b 1.379 (0.773, 1.971) (0.694, 2.092)
U 0.772 (0.676, 0.855) (0.674, 0.875)
L 0.082 (0.036, 0.119) (0.030, 0.121)

100sx 0.472 (0.332, 0.593) (0.305, 0.625)
100sz 0.186 (0.140, 0.234) (0.137, 0.240)
100sY 0.435 (0.416, 0.453) (0.411, 0.453)

tionship and denote them with the vector m̂. Table A6 presents these targeted mo-
ments.

We further construct the vector m, i.e., the model counterpart of m̂, which is esti-
mated by using our simulated dataset. Specifically, for each set of model parameters,
we simulate our model and estimate the revision-surprise relationship with the same
nonparametric regression as for the empirical data (see Section 2.4). We then obtain
the vector m from the estimated relationship between forecast revisions and surprises
observable to the econometrician. The distance that we construct is:

L(Q) =
1
N

[m (Q)� m̂]0 Ŵ [m (Q)� m̂] .

where N = 50 is the length of the vector of targeted moments m̂ and Ŵ is the weighting
matrix with diagonal elements being the precision of moments m̂. Our goal is to choose
model parameters to “minimize” the distance L(Q) in a pseudo Bayesian manner by
using MCMC with the Metropolis-Hastings algorithm.

A few remarks regarding the simulation procedure are in order. First, we choose
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sq, i.e., the standard deviation of q, to exactly match the empirical counterpart of an
unconditional standard deviation of realized earnings (after removing the firm and
time fixed effects). As a result, the calibrated value of 100sq is 0.985. Second, when
we simulate the model, we feed surprises (to the econometrician) uncovered from
the empirical data into our simulation. We recover the corresponding surprises to
the analysts and then obtain updated forecasts by using decision rules in our model.
Third, in this model, the unconditional volatility of surprises to the econometrician
is determined by both sY and 1/s2

q + 1/s2
z . We directly estimate 1/s2

q + 1/s2
z in the

estimation and back out sY by requiring that the unconditional volatility of surprises
matches its empirical counterpart, an internal consistency condition for our estimation
strategy.

The estimated parameters are reported in Table A7 together with the 90% and
95% high posterior density interval (HPDI). The relative magnitude of the estimated
volatilities appears to be reasonable. The volatility of private information is larger
than that of earnings. The managerial guidance is much more precise than the pri-
vate information. This is likely because there may not be much private information
that arrives during the time window that we construct (i.e., between the two forecasts
around the date of managerial guidance release). Based on this set of parameters, the
response of forecast revisions to surprises under noisy rational expectation (i.e., kRE)
is 0.132. The upper bound for the subjective belief on managerial guidance precision
is 0.772, and the lower bound is 0.082. The support is large enough to allow sufficient
ambiguity and encompass kRE. The degree of ambiguity aversion is the key, and its
value is estimated to be l = 449.9. Finally, the parameter b that characterizes the
utility function is estimated to be positive (i.e., slightly larger than 1), indicating that
analysts are likely to care about the earnings performance of firms that they cover.

Using this set of estimated parameters, we simulate the model and nonparamet-
rically estimate the revision-surprise relationship with the simulation data. In Figure
4(a), we display the relationship, together with its empirical counterparts (previously
shown in Figure 3(a)). In Figure 4(b), we illustrate its implied derivative with respect
to surprises. Our model can successfully capture both features of nonmonotonicity
and asymmetry.
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Figure A4. The revision-surprise relationship nonparametrically estimated with simulation data. We
simulate the model with the set of parameters reported in Table A7 and, in particular, l = 449.9. The
dashed line in panel (a) illustrates the revision-surprise relationship estimated with simulation data.
The empirical counterpart (i.e., the solid line) and its confidence interval (i.e., the shaded area) are also
plotted for comparison. Panel (b) illustrates the derivative of the revision-surprise relationship with the
dashed line. Its empirical counterpart is illustrated with the solid line.

D. Discussions: Alternative Hypotheses

In this section, we provide a detailed discussion of several likely candidates to ac-
count for the empirical patterns documented in our paper: diagnostic expectation,
over-confidence, loss aversion, dynamic models, and agency issues.

D.1. Diagnostic Expectations and Over-confidence

Bordalo, Gennaioli, Ma, and Shleifer (2020) show that forecasters with diagnostic ex-
pectations over-react to new information at the individual level. Diagnostic expec-
tations proposed by Bordalo, Gennaioli, and Shleifer (2018) is a non-Bayesian model
of belief formation that formalizes representativeness heuristic (Kahneman and Tver-
sky 1972): agents overweight states that are more likely in light of the arrival of new
signals. As a consequence, agents over-react to new information when forming expec-
tations. Specifically, agents update their beliefs using the following distorted posterior
density f y (q|Iit):

f y (q|Iit) µ f (q|Iit)

✓
f (q|Iit)

f (q|Iit�1)

◆y

,

where f (q|Iit) denotes the Bayesian posterior density and the constant y � 0 mea-
sures the extent to which the posterior of agents with diagnostic expectations are dis-
torted away from Bayesian benchmark. When y = 0, the model with diagnostic expec-
tations reduces to the noisy information benchmark. Observe that Rt (q) ⌘ f (q|Iit)

f (q|Iit�1)

measures the representativeness of the new information defined as the gap between
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Iit and Iit�1. When y > 0, the distorted posterior belief overweights states q featuring
Rt (q) � 1, which leads to overreaction to the arrival of new information (Bordalo,
Gennaioli, Ma, and Shleifer 2020).

In this case, the optimal initial and updated forecasts are given by:

FDE
0i = E [q|z0i] + y (E [q|z0i]� E [q]) ,

and

FDE
i = E [q|z0i, xi, y] + y (E [q|z0i, xi, y]� E [q|z0i]) ,

where E [q|Ii] denotes the conditional expectations (i.e., Bayesian posterior). As a
consequence, forecast revisions under diagnostic expectations are given by:

FRDE
i = (1 + y) kRE

⇣
y � FDE

0i

⌘
+ (1 + y) kx

⇣
x � FDE

0i

⌘
+ y

⇣
kx + kRE

⌘
� 1

1 + y

�
FDE

0i ,

(A2)

where kx ⌘ tx
tq+tz+tx+tY

> 0 and kRE ⌘ tY
tq+tz+tx+tY

> 0 are the respective weights for
the private and public information in the noisy information benchmark. Similar to the
noisy information benchmark, the term y � FDE

0i is the theoretical counterpart to the
manager guidance surprises in our empirical exercise. Observe that the relationship
between forecast revisions and surprises in Equation (A2) remains linear and state-
independent.

Broer and Kohlhas (2022) show that over-confidence can help rationalize over-
reaction documented with SPF data, in which they assume that forecasters subjectively
believe that new signals are more precise than they actually are. Interestingly, once
we allow for such behavioral feature in the noisy information benchmark specified in
Section 3.2, the FR-on-Surprise relation is still linear, while overreaction to new infor-
mation appears. To see this, specifically we assume that analysts subjective believe
that h ⇠ N

�
0, 1/t̄y

�
such that t̄y > tY and derive the relationship between forecast

revisions and surprises as follows:

FROC
i ⌘ FOC

i � F0i = k̄y (yi � F0i) + k̄x (xi � F0i) ,

where k̄x ⌘ tx
tq+tz+tx+t̄y

> 0 and k̄y ⌘ t̄y
tq+tz+tx+t̄y

> 0.

D.2. Loss Aversion

Another plausible conjecture is that analysts are loss-averse, which may also likely
generate the empirical pattern documented in Section 2.4, given that they behave in a
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pessimistic way. To investigate this possibility, we consider two commonly used speci-
fications of loss aversion: one parsimonious setup with analytical solutions (Capistrán
and Timmermann 2009) and another flexible setup with more quantitative potentials
(Elliott, Komunjer, and Timmermann 2008, Elliott and Timmermann 2008). In this
section, we show that (1) the parsimonious setup predicts a linearly increasing rela-
tion between forecast revisions and surprises and that (2) the flexible setup predicts a
monotone increasing relation between forecast revisions and surprises.

The Parsimonious Setup. We follow Capistrán and Timmermann (2009) and specify
the loss function of analysts to be:

L (Fi, q; f) =
1

f2 [exp (f (q � Fi))� f (q � Fi)� 1] ,

where Fi stands for the forecast of analyst i and the parameter f is a constant that
captures asymmetries in the loss function. If f > 0, analysts dislike negative forecast
error q � Fi < 0 more than positive forecast error q � Fi > 0. If f goes to zero, the loss
function is reduced to the standard MSE function. Information structure is the same
as that of the noisy information benchmark.

Analyst i chooses the optimal forecasts FL
i to minimax the loss function conditional

on her information set, which leads to her decision rule:

FL
i = Ei [q]�

1
2

fVari [q] .

Relative to the noisy information expectations benchmark (f = 0), the loss-averse an-
alyst i (f > 0) would like to inflate the forecast errors and bias her forecast downward
by 1

2 fVari [q].

Accordingly, the initial optimal forecast is given by:

FL
0i = E [q|z0i]�

1
2

fVar [q|z0i] =
tz

tq + tz
z0i �

1
2

f
1

tq + tz
.

and the updated optimal forecast is given by:

FL
i = E [q|z0i, xi, y]� 1

2
fVar [q|z0i, xi, y] =

tzzi + txxi + tYy
tq + tz + tx + tY

� 1
2

f
1

tq + tz + tx + tY
.

Therefore, the forecast revision is such that

FRL
i ⌘ FL

i � FL
0i = ky

⇣
y � FL

i0

⌘
+ kx

⇣
xi � FL

i0

⌘
. (A3)

where kx ⌘ tx
tq+tz+tx+ty

> 0 and ky ⌘ tY
tq+tz+tx+ty

> 0 are the relevant weights for the
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private and public information under noisy information benchmark. Observe that the
relation between forecast revisions and guidance surprises are still linear.

The Flexible Setup. Following Elliott, Komunjer, and Timmermann (2008) and El-
liott and Timmermann (2008), we specify the loss function of analysts to be:

Lp (Fi, q; a) = [a + (1 � 2a) 1 {q � Fi < 0}] |q � Fi|p , (A4)

where 1 {·} denotes an indicator function, the parameter a 2 (0, 1) is a constant cap-
tures asymmetries in the loss function, and the parameter p � 1 is another constant
that controls the curvature of the loss functions.

This specification of loss function is flexible and can be reduced to many commonly
used loss functions in the literature (as shown in Elliott, Komunjer, and Timmermann
2008 and Elliott and Timmermann 2008). For example, if a = 1

2 the loss function is
symmetric. It can be further reduced to the standard MSE loss function if p = 2 or
mean absolute error function if p = 1. In particular, when a < 1

2 , negative forecast
error (q � Fi < 0) disproportionately induces more loss than positive forecast error
(q � Fi > 0), indicating that analysts are loss averse.

For the ease of exposition, we focus our analysis on the parameter space that p = 2,
that is, the loss function is of a generalized MSE form. However, it is noted that all
results presented below can be extended to the general case that p � 1.

Analyst i chooses the optimal forecasts FL
i to minimax the loss function conditional

on her information set. Implicitly, her optimal decision rule is characterized by:

Z +•

�•

⇣
q � FL

i

⌘
f (q|Ii)dq +

1 � 2a

a

Z FL
i

�•

⇣
q � FL

i

⌘
f (q|Ii)dq = 0, (A5)

where f (q|Ii) denotes the posterior density of the fundamental q with respect to the
information set Ii.

It is worth noting that when a = 1
2 (i.e., the loss function is symmetric), only the

first term of the LHS of (A5) is relevant. Therefore, the optimal forecast is just the
conditional expectation as in the noisy information setup:

Z +•

�•

⇣
q � FL

i

⌘
f (q|Ii)dq = 0 ) FL

i = E [q|Ii] .

where E [q|Ii] denotes the conditional mean under Bayesian posterior.21

21For the general case p � 1, the same result holds. Intuitively, as long as the information structure is
symmetric, any symmetric loss function implies that optimal forecasts are the conditional expectations
(Bhattacharya and Pfleiderer 1985).

14



Table A8. Forecast Errors, Forecast Revisions and Earnings in the Last Quarter

Outcome Variable: in Quarter t for Firm j, analyst i’s

Forecast Errors Forecast Revisions

1% and 99% 2.5% and 97.5% 1% and 99% 2.5% and 97.5%

(1) (2) (3) (4)

Earnings in the Last Quarter (t � 1) 0.0024 0.0006 -0.0048 -0.0058
(0.0070) (0.0048) (0.0066) (0.0053)

Surprisei 0.1468*** 0.2445***
(0.0125) (0.0128)

Constant -0.0000 0.0001** -0.0009*** -0.0004***
(0.0001) (0.0001) (0.0001) (0.0001)

Time FEs NO NO YES YES
Analyst FEs NO NO YES YES
Firm FEs YES YES YES YES
Obs. 110,895 110,895 110,895 110,895
Adj. R-sq 0.2341 0.1850 0.3943 0.4588
The standard errors are clustered on firm and calendar year-quarter following (Petersen 2009).
*** p<0.01, ** p<0.05, * p<0.1

Furthermore, observe that the second term of the LHS of (A5) is negative if and
only if analysts are loss averse (a < 1

2). Therefore, as in the parsimonious setup,
loss averse analysts would like to inflate the forecast errors by biasing their forecasts
downwards

FL
i < E [q|Ii] .

Proposition 7. With the flexible specification of the loss function (A4), forecast revisions are
globally monotone in surprises.

To understand this lemma, we note that a sufficient condition for the global mono-
tonicity is that the optimal forecast FL

i is globally monotone in signals. According to
(A5), the optimal forecasts can be written as the summation of the Bayesian posterior
mean and a bias:

FL
i = E [q|Ii]| {z }

Bayesian

+
1 � 2a

a

Z FL
i

�•

⇣
q � FL

i

⌘
f (q|Ii)dq

| {z }
Bias

. (A6)

In the proof of Lemma 7, we demonstrate that both the Bayesian posterior mean and
the bias are increasing in signals of the fundamental q, which is the same as the parsi-
monious setup. Though the FR-on-Surprise relation can be non-linear in this case, it is
still globally monotone, which is still inconsistent with the documented non-monotone
FR-on-Surprise relation in Section 2.4.
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D.3. Dynamic models.

To illustrate, recall that we show in Section 2.2 that earnings in the last quarter cannot
predict forecast errors conditional on forecast revisions (see Table 1). How do forecast
errors react to earnings in the last quarter without controlling forecast revisions? We
run a regression of forecast errors (i.e., analyst i’s forecast error in quarter t for firm j)
on earnings in the last quarter (quarter t � 1 and firm j) with a full set of fixed effects
as in Equation (1). We report the estimation results in Table A8. Column (1) shows
that the estimated coefficient is very small and insignificant, suggesting that earnings
in the last quarter cannot predict analysts’ forecast errors. To ensure robustness, we
winsorize the FEijt and the last quarter earnings at 2.5% and 97.5% of their respective
distributions and re-estimate Equation (1). We report the results in column (2), which
are consistent with those in column (1). This result is in contrast with both Kohlhas
and Walther (2021) and Afrouzi, Kwon, Landier, Ma, and Thesmar (2022).

Furthermore, in this setting, we predict that forecast revisions would not be af-
fected by earnings in the last quarter. To confirm this, we run forecast revisions on
surprises as well as earnings in the last quarter. The results are reported in columns
(3) and (4) of Table A8 for different levels of winsorization. The estimated coefficient
on earnings in the last quarter is very small and insignificant, suggesting that they do
not affect analysts’ forecast revisions in the current period either.

This set of results is intuitive: the initial forecast in this setting absorbed informa-
tion contained in earnings in the last quarter, which do not impact forecast revisions
that take place in the current quarter. Therefore, forecast revisions reflect the impact of
earnings guidance, instead of the impact of earnings in pervious quarters. By contrast,
in studies using SPF data, “initial forecasts” for a random variable xt+k in period t + k
are made in period t � 1 and “updated forecasts” are made in period t after observing
the current realization of the variable xt.

D.4. Agency issues

Skewed information reliability. It is empirically testable whether positive guidance
is of lower quality on average. We regress a measure of guidance quality on guid-
ance negativity and report the results in Table A9. Specifically, the dependent variable
is the absolute difference between managerial guidance and actual realized earnings
per share for firm i in quarter t, scaled by the stock price at the beginning of quar-
ter t. The independent variable of our interest, Negative Guidance, is an indicator,
which is equal to 1 if the managerial guidance is smaller than the median of individ-
ual analysts’s initial forecasts before guidance, and 0 otherwise. We control for firm
and calendar year-quarter fixed effects so that the results cannot be explained by any
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Table A9. Guidance Quality and Negativity

Outcome Variable: Absolute Difference between Guidance and Earnings

Sample: Full Exclude Conforming

1% and 99% 2.5% and 97.5% 1% and 99% 2.5% and 97.5%

(1) (2) (3) (4)

Negative Guidance 0.0012*** 0.0008*** 0.0010*** 0.0003
(5.1339) (3.7038) (3.1044) (1.2632)

Constant 0.0050*** 0.0048*** 0.0057*** 0.0056***
(35.1519) (38.5143) (26.4874) (30.2028)

Time FEs YES YES YES YES
Firm FEs YES YES YES YES

Observations 15,528 15,528 13,476 13,500
Adjusted R-squared 0.6105 0.5395 0.6151 0.5428
Notes: The observation numbers in columns (3) and (4) vary because the numbers of conforming
cases vary due to Winsorization. The standard errors are clustered on firm and year-quarter. ***
p<0.01, ** p<0.05, * p<0.1.

time-invariant firm characteristics and across-quarter differences.

Column (1) reports the regression results based on the full sample of 15,528 firm-
quarter observations, while column (2) presents results of the same specification ex-
cept that we winsorize the managerial guidance and the difference between guidance
and earnings at the 2.5% and 97.5 levels to mitigate potential bias driven by extreme
observations. Furthermore, we repeat the same set of exercises (reported in columns
(1) to (2)), by excluding all cases where the managerial guidance coincides with the
prevailing median analysts’ forecast (i.e., conforming cases), and show the respective
results in columns (3) to (4).

The coefficient on Negative Guidance is positive and significant in columns (1),
implying that the quality of guidance, which is inversely related to the magnitude of
differences between guidance and realized earnings, is on average slightly lower on
condition that the managerial guidance is negative. We worry that that is driven by
outliers, but results in column (2) suggest that it is unlikely. The result, reported in
column (3), remains the same, once we exclude conforming cases. The effect becomes
insignificant, reported in column (4), if we exclude conforming cases and winsorize at
5%. In any case, the evidence does not favor the conjecture that positive guidance is
less reliable. The managerial motives can be complex, often unobservable and unpre-
dictable, which constitutes a source for guidance quality to be unreliable. That is the
key motivation for our assumption that guidance quality is uncertain.
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E. Proofs and Derivations

Proof of Lemma 1. The fact that forecast revisions are linear in guidance surprises di-
rectly follows from Equation (7). Further, forecast errors and forecast revisions are not
correlated, because of rationality in noisy information expectation, that is, forecast er-
rors are uncorrelated with any observables in the information set including forecast
revisions. To demonstrate it mathematically, notice that

FENI
i =

tq

tq + tz + ty
q � tz

tq + tz + ty
ii �

tY
tq + tz + ty

h;

FRNI
i =

tY
tq + tz + tY

✓
tq

tq + tz
q + h � tz

tq + tz
ii

◆
.

The covariance between FE and FR is then given by

Cov
⇣

FENI
i , FRNI

i

⌘
µ

tq

tq + tz + ty

tq

tq + tz

1
tq

� tY
tq + tz + tY

1
tY

+
tz

tq + tz + ty

tz
tq + tz

1
tz

= 0,

which completes the proof.

Derivation of Equation (12)-(14). Denote d ⌘ ty
tq+tz+ty

. Then, it can be shown that

p̃
�
ty|F⇤

0i, si; Fi
�
⌘ p̃
�
ty|z0i, F⇤

0i, si + F⇤
0i; Fi

�
,

= p̃
�
ty|z0i, xi, y

�
,

µ exp
✓
�l

⇢
�F2

i + (2Fi + b) (F⇤
0i + dsi)�


(F⇤

0i + dsi)
2 +

1 � d

tq + tz

��◆

| {z }
f0
⇣

E
ty
i [U(Fi,q)]

⌘

⇥ p (F⇤
0i) p

�
si|ty

�
| {z }

=p(z0i,y|ty)

p
�
ty
�

,

µ exp
✓
�l


(2Fi + b) dsi �

✓
2F⇤

0idsi + d2s2
i �

d

tq + tz

◆�◆
p
�
si|ty

�
p
�
ty
�

,

where the third line uses the fact that F⇤
0i and si are independent with only the distri-

bution of si affected by ty; and the last line drops all terms that are not a function of ty.
Then, the optimality condition (10) can be compactly written as

Fi = F⇤
0i + k (F⇤

0i, si, Fi) · si,
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where

k (F⇤
0i, si, Fi) =

Z

Gy

✓
ty

tq + tz + ty

◆
p̃
�
ty|F⇤

0i, si; Fi
�

dty.

Proof of Lemma 2. The log-likelihood ratio can be specifically written by:

log
�

L
�
ty
��

=� lsi


2
�

F0
i � Fi

� ✓ ty

tq + tz + ty

◆�
+ constant.

Given the fact that ty/
�
tq + tz + ty

�
increases in ty and that F0

i � Fi > 0, L(ty) de-
creases in ty, if and only if si > 0; and L(ty) increases in ty, if and only if si < 0. The
lemma is shown.

Proof of Proposition 1. The optimality condition (10) is equivalent to (12):

Fi = F⇤
0i +

Z

Gy

✓
ty

tq + tz + ty

◆
p̃
�
ty|z0i, y; Fi

�
dty

�

| {z }
k

·si. (A7)

To obtain the second equality, we use the definition of F⇤
0i and si and the definition of

p̃
�
ty|z0i, y; Fi

�
specified in the main text.

We first demonstrate that the right-hand side of (A7) is decreasing in Fi. Towards
this end, we show

1
2
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∂Fi
si =

8
<

:

Z

Gy

✓
ty

tq + tz + ty

◆ f00
⇣

E
ty
i [U (Fi, q)]

⌘

f0
⇣

E
ty
i [U (Fi, q)]

⌘ ∂E
ty
i [U (Fi, q)]

∂Fi
p̃
�
ty|z0i, y; Fi

�
dty

� k

2

4
Z

Gy

f00
⇣

E
ty
i [U (Fi, q)]

⌘

f0
⇣

E
ty
i [U (Fi, q)]

⌘ ∂E
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⌘
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�
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The first equality is obtained by using the definition of k and the expression of ∂ p̃/∂Fi.
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That is,

∂ p̃
�
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�

∂Fi
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dty
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To get the second equality, we use the expression of ∂E
ty
i [U (Fi, q)] /∂Fi. That is,

∂E
ty
i [U (Fi, q)]

∂Fi
=

✓
ty

tq + tz + ty
� k

◆
si.

The third inequality holds given f0(·) > 0 and f00(·) < 0.

We then notice that k is bounded between 0 and 1. Therefore, the right-hand side
of Equation (12) goes to •, when Fi approaches �•; and it goes to �• when Fi ap-
proaches •. Both existence and uniqueness are implied.

Next we show that the optimal response k⇤ only depends on si. Observe that

p̃
�
ty|F⇤

0i, si; Fi
�
= p̃
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,

µ exp
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p
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.

To derive the first equality, we use the Equation (12) to replace Fi, and therefore F⇤
0i

drops out. Therefore, k⇤ is the fixed point of the following condition:

k⇤ =
Z

Gy

✓
ty

tq + tz + ty

◆
p̃
�
ty|si; k⇤

�
dty.

Therefore, it is the case that k⇤ is only a function of si.

Proof of Proposition 2. By using the definition F⇤
i , the difference in the expected util-

ities is explicitly given by:
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where d ⌘ ty/
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tq + tz + ty

�
. Let T (b) ⌘ k⇤

�
s�i
�
� k⇤

�
s+i
�
.

Claim 1: If b = 0, then T (b) = 0.

We guess and verify that it holds that k⇤
�
s�i
�
= k⇤

�
s+i
�

. If this is true, we establish
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that E
ty
i [U (Fi, q)] is symmetric in si: for any ty and any pair of
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By the definition of k, this implies:
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which implies that b = 0 is a solution to T (b) = 0. Further, according to Proposition
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The last inequality is obtained by using the fact that
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By the definition of k, this implies:
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A contradiction. Similarly, suppose towards a contradiction that there exists some
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b ! •. Therefore, by the definition of k, it implies that

k⇤
�
s�i
�

> k⇤
�
s+i
�

.

That is, T (b) > 0. The claim is shown.

Claims 1 and 2 imply that T (b) crosses zero once and only at b = 0. Combined
with Claim 3, it further implies that bT (b) � 0, where the equality holds only when
b = 0. The proposition is shown.

Proof of Proposition 3 . If forecasters are ambiguity neutral, the optimal forecasts are
such that
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Proof of Proposition 4 . The objective function (4) under the maxmin criterion be-
comes:

max
F2R

min
ty2Gy

E
h
� (F � q)2 + bq|zi, y; ty

i
,

where Gy is the full support for ty. Let the upper bound be tmax
y and the lower bound

be tmin
y . For ease of notation, denote the subjective relative precision of guidance to be
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.

and accordingly, it is bounded by
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.

To prove the proposition, we first characterize the optimal forecasting rule under
the maxmin criterion. Then, we proceed to prove that F⇤

i � F⇤
0i is non-decreasing in si.

First of all, it can be shown that
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where D ⌘ [dmin, dmax] and the value function V (k, d) is given by

V (k, d) ⌘� (F⇤
0i + ksi)

2 + [2 (F⇤
0i + ksi) + b] (F⇤

0i + dsi)�

(F⇤

0i + dsi)
2 + (1 � d)

1
tq + tz

�
,

where we have used the fact that F = F⇤
0i + ksi. Notice that V (k, d) is quadratic in k

and d. Also note that V (k, d) is concave in d. Therefore, we have that for any k 2 R:

argmin
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Notice that

V (k, dmax)� V (k, dmin)

= (2ksi + b) si (dmax � dmin) +
1

tq + tz
(dmax � dmin)� s2

i

⇣
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It can then be shown that

V (k, dmax)� V (k, dmin) > 0 , k > T (si) ⌘
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�
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1

tq+tz
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i

.

In what follows, we characterize the optimal forecasting rule for three exclusive
cases:

• If dmin > T (si), it can be shown that

– when k 2 (�•, T (si)], mind2D V (k, d) = V (k, dmax). Hence, mind2D V (k, d)

is increasing in k.

– when k > T (si), mind2D V (k, d) = V (k, dmin). Hence, mind2D V (k, d) is
first increasing in k and then decreasing in k. It achieves its maximum at
k = dmin.

Figure 5(a) graphically illustrates the value function under the worst case sce-
nario when dmax < T (si). Therefore, it must be the case that the optimal k⇤ =

dmin when dmin > T (si).

• If dmax < T (si), it can be shown that

– when k 2 (�•, T (si)], mind2D V (k, d) = V (k, dmax). Hence, mind2D V (k, d)

is first increasing in k and then decreasing in k. It achieves its maximum at
k = dmax.

– when k 2 [T (si) ,+•), mind2D V (k, d) = V (k, dmin). Hence, mind2D V (k, d)

is decreasing in k.

Figure 5(b) graphically illustrates the value function under the worst case sce-
nario when dmax < T (si). Therefore, it must be the case that the optimal k⇤ =

dmax when dmax < T (si).

• If dmin < T (si) < dmax, it is then straightforward to show the following:

– when k 2 (�•, T (si)], mind2D V (F, d) = V (F, dmax). Hence, mind2D V (F, d)

is increasing in k.
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– when k 2 [T (si) ,+•), mind2D V (F, d) = V (F, dmin). Hence, mind2D V (F, d)

is decreasing in k.

Figure 5(c) graphically illustrates the value function under the worst case sce-
nario when dmin < T (si) < dmax. Therefore, it must be the case that the optimal
k⇤ = T (si) when dmin < T (si) < dmax.

�min �maxT

(a) dmin > T (si)

�min �max T

(b) dmax < T (si)

�min �maxT

(c) dmin < T (si) < dmax

Figure A5. The value function under the worst case scenario: minty2Gy V (k, d).

To summarize, we have the following optimal forecasting rule under the maxmin
criterion:

k⇤ =

8
>>><

>>>:

dmin if dmin > T (si);

dmax if dmax < T (si);

T (si) otherwise.

(A8)

Or equivalently,

F⇤ � Xi =

8
>>><

>>>:

dminsi if dmin > T (si);

dmaxsi if dmax < T (si);

T (si) si otherwise.

(A9)

Note that T (si) si is always increasing in si. Therefore, given the continuity of F⇤
i � F⇤

0i
with respect to si, it must be the case that F⇤

i � F⇤
0i is non-decreasing in si.
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Derivation of Equation (15). Following the definition of b̂1 (sm, e), we have

b̂1 (sm, e) ⌘Cov (FEi, FRi|si 2 I (sm, e))
Var (FRi|si 2 I (sm, e))

,

=
Cov (q � F0i � FRi, FRi|si 2 I (sm, e))

Var (FRi|si 2 I (sm, e))
,

=� 1 +
Cov (q, FRi|si 2 I (sm, e))

Var (FRi|si 2 I (sm, e))
� Cov (F0i, FRi|si 2 I (sm, e))

Var (FRi|si 2 I (sm, e))
,

=� 1 +
Cov (q, FRi|si 2 I (sm, e))

Var (FRi|si 2 I (sm, e))
,

where in the last equality we use the fact that Cov (F0i, FRi|si 2 I (sm, e)) = 0.

To see why this is the case, notice that the unconditional covariance between initial
forecasts F0i and guidance surprise si is zero: Cov (F0i, si) = 0. Further using the fact
that both F0i and si are normally distributed, we know that initial forecasts F0i and
guidance surprise si are independent. Moreover, since forecast revisions FRi is a (non-
linear) function of guidance surprise si only, it is then straightforward to show that
Cov (F0i, FRi|si 2 I (sm, e)) = 0.

For any si 2 I (sm, e), a first-order approximation of FRi around the si = sm implies

FRi ⇡ k (sm) sm +
⇥
k (sm) + k0 (sm) sm

⇤
(si � sm) ,

= �k0 (sm) s2
m +

⇥
k (sm) + k0 (sm) sm

⇤
si.

Substituting it in the expression of b̂1 (sm), we obtain:

b̂1 (sm) ⌘ lim
e!0

b̂1 (sm, e) ,

⇡ �1 + lim
e!0

✓
Cov (q, si|si 2 I (sm, e))

Var (si|si 2 I (sm, e))
/
⇥
k (sm) + k0 (sm) sm

⇤◆
,

= �1 +
kRE

k (sm) + k0 (sm) sm
,

where we use Equation (A10) to obtain at the last equality.

In the following, we provide an analysis in the special of noisy rational expecta-
tions. Under rationality, it can be shown that

Cov
⇣

FENI
i , FRNI

i

⌘
= 0.

Given FENI
i and FRNI

i are normally distributed, it can be shown that FENI
i and FRNI

i are
independent, which implies that Cov

⇣
FENI

i , FRNI
i |si 2 I (sm, e)

⌘
= 0. Therefore, we
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have the following:

b̂RE
1 (sm, e) =� 1 +

1
kRE

Cov (q, si|si 2 I (sm, e))
Var (si|si 2 I (sm, e))

= 0, (A10)

where we use the fact that FRNI
i = kREsi with kRE given by Equation (6).

Proof of Proposition 5. To prove part (i) of the proposition, based on the approxima-
tion of Equation (15), it is sufficient to prove that

lim
si!0

dk (si) + k0 (si) si
dsi

= 2 lim
si!0

k0 (si) < 0.

Notice that k (si) =
R

Gy

⇣
ty

tq+tz+ty

⌘
p̃
�
ty|si; k (si)

�
dty where the distorted posterior

p̃
�
ty|si; k (si)

�
is such that

p̃
�
ty|si; k

�
µ exp

✓
�l


bdsi + 2kds2

i �
✓

d2s2
i �

d

tq + tz

◆�◆
p
�
si|ty

�
p
�
ty
�

.

Some algebra implies that

dk (si)
dsi

=
Z

Gy
d

dp̃
�
ty|si; k

�

dsi
dty,

=� l (b + 4k (si) si + (tq + tz) si)gVari (d) + 2lsigCovi

⇣
d, d2

⌘
� 2ls2

i
gVari (d)

dk (si)
dsi

,

where gVari (·) and gCovi (·) denote the variance and covariance under the distorted
posterior p̃

�
ty|si; k

�
. It is then straight-forward to see that

lim
s!0

dk (si)
dsi

= lim
s!0

�lbgVari (d) < 0,

which completes the proof of part (i).

To prove part (ii) of the proposition, notice that when |si| goes to infinity, the dis-
torted belief p̃

�
ty|si; k

�
is degenerate that puts probability 1 on the lowest possible

precision for manager guidance:

lim
|si|!•

k (si) = dmin ⌘
tmin

y

tq + tz + tmin
y

.

Hence we have that lim|si|!• k0 (si) = 0. It is then can be shown that

lim
|si|!•

b̂1 (si) = �1 + 1/dmin.
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Further using the fact that b̂1 (0) = k (0) > dmin, it is straight-forward to prove that

b̂1 (0) < lim
|si|!•

b̂1 (si) .

Proof of Proposition 6. It is straight-forward to show that the fundamental q and the
initial forecasts F⇤

0i are both unconditionally mean zero:

E [q] = 0, E [F⇤
0i] = 0.

Furthermore, observe that

E [FRi] =
Z +•

�•
k (si) si p (si)dsi,

=
Z 0

�•
k (si) si p (si)dsi +

Z +•

0
k (si) si p (si)dsi,

=�
Z +•

0
k (�si) si p (si)dsi +

Z +•

0
k (si) si p (si)dsi,

=
Z +•

0
[k (si)� k (�si)] si p (si)dsi < 0,

where p (si) denotes the probability density of guidance surprises in the objective en-
vironment. To arrive at the third equality, we use the fact that p (si) is symmetric and
the last inequality follows Proposition 2 such that k (si) < k (�si).

Finally, using the fact that FEi = q � F⇤
0i � FRi, it is straight-forward to prove that

E [FEi] > 0.

Proof of Proposition 7. The optimal forecast FL
i is globally monotone in the signal is

a sufficient condition for the global monotonicity. According to (A5), the optimal fore-
casts can be expressed as

FL
i = E [q|Ii] +

1 � 2a

a

Z FL
i

�•

⇣
q � FL

i

⌘
f (q|Ii)dq. (A11)

Assume that Ii = {xi} with xi ⇠ N
�
q, s2

x
�
, where the fundamental q ⇠ N

�
0, s2

q

�
.

In what follows, we prove that dFL
i

dxi
> 0. Taking total derivative w.r.t xi on both
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sides of (A11) and re-arranging leads to

dFL
i

dxi
=

dE [q|xi]
dxi

� 1 � 2a

a
P
⇣

q < FL
i

��� xi

⌘ dFL
i

dxi

+
1 � 2a

a

 
1
s2

q

+
1
s2

x

!Z FL
i

�•

⇣
q � FL

i

⌘
(q � E [q|xi]) f (q|xi)dq,

where P
⇣

q < FL
i

��� xi

⌘
denotes the conditional probability of negative forecast error.

Using the fact that FL
i < E [q|xi], we can prove that

1 � 2a

a

 
1
s2

q

+
1
s2

x

!Z FL
i

�•

⇣
q � FL

i

⌘
(q � E [q|xi]) f (q|xi)dq > 0.

Combined with the fact that dE[q|xi]
dxi

> 0, it is straight-forward to see that

dFL
i

dxi
> 0.
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