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1 Introduction

There is a growing interest in understanding how forecasters form expectations and
make forecasts on macroeconomic variables. The literature on expectation formation
primarily focuses on how forecasters make predictions for macroeconomic variables
following a stationary process, with fewer studies investigating how deal with trends
and cycles in their expectation formation process. In this paper, we introduce a simple
framework to characterize how forecasters update their beliefs, form expectations and
make forecasts when macroeconomic variables consist of trends and forecasters cannot
perfectly distinguish between trends and cycles.

This theoretical exploration is empirically relevant. We provide a set of facts con-
cerning forecasting behaviors across forecast horizons to inform the process of expec-
tation formation and show that they are not consistent with the conjecture that fore-
casters believe trends are stable or observable. We begin by constructing proxies for
forecasters’ beliefs regarding trend and cyclical components by utilizing data from the
Survey of Professional Forecasters (SPF). To proxy beliefs about trends, we rely on their
three-year-ahead forecasts for the macroeconomic variables (e.g., real GDP growth rate
and the unemployment rate). To proxy forecasters’ beliefs on short-term cyclical com-
ponents, we use the deviation between the now-cast of the relevant macroeconomic
variable and its three-year-ahead forecast.

Utilizing the proxies, we design a new empirical test. We construct the “across-
period changes” in trend beliefs and across-period changes in cyclical beliefs, and
use their correlation to inform the process of belief updating. Specifically, we proxy
changes in one’s trend beliefs as the difference between their three-year ahead fore-
casts between quarter t and t− 1. Similarly, we proxy changes in one’s cyclical beliefs
by examining the corresponding cross-period changes in the cyclical component we
constructed. If the forecasted variable follows a stationary data generation process
(e.g., an AR(1) process), the correlation between changes in trend beliefs and changes
in cyclical beliefs is expected to be zero. That’s because cross-period changes in cyclical
beliefs reflect innovations in cyclical components between quarter t and t− 1. If fore-
casters believe the trend is stable, the changes in trend beliefs across quarters should
be only noises.

We estimate the concerned correlation using forecast data for various macroeco-
nomic variables. We find that most of the correlations are significantly negative, which
contradicts the prediction of standard models with a stationary process.

Furthermore, we examine how the dispersion of forecasts varies over the forecast
horizon. This pattern is also informative about how forecasters form expectations.
Specifically, utilizing the SPF data, we observe that for most macroeconomic variables
(after being transformed into growth rate), except for inflation, forecast dispersion
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increases as the forecast horizon extends from zero to four quarters ahead. To address
any concerns that a four-quarter forecast horizon may not be sufficiently long, we
conduct a number of additional robustness tests. For example, utilizing year-level
expectation data for real GDP and the unemployment rate, we show that the year-
level forecast dispersion also increases as the forecast horizon expands from one to
three years (or even longer horizon), providing further corroborating evidence.

This finding is also inconsistent with models that assume a stationary process for
the forecasted variables. In those models, the significance of dispersed private infor-
mation regarding the current state diminishes for forecasting future states. As the
impact of state innovation decreases over longer horizons, heterogeneity across fore-
casters diminishes as the forecast horizon expands. For instance, if the state follows an
AR(1) process with a specific long-run mean, the forecasts by various forecasters even-
tually converge to that mean with a sufficiently long forecast horizon. Consequently,
there will be little forecast dispersion among forecasters for the long-term forecast.

While this set of facts contradicts the predictions of the standard models that as-
sume stable trends, can an augmented model, which allows for a non-stationary trend
component, account for them? We show that such an augmented model still fails to
produce the empirical patterns if the trend component is ex post observable. For the
first pattern, the changes in trend beliefs reflect innovations in trend components that
are independent of innovations in cyclical components. Therefore, the correlation be-
tween changes in trend beliefs and cyclical beliefs in this model is still zero. For the
second pattern, the dispersion of forecasts caused by heterogeneity in trend beliefs
across forecasters remains stable over the forecast horizon. Therefore, the model al-
ways predicts a decreasing dispersion of forecasts over the horizon, which is caused
by heterogeneity in cyclical beliefs across forecasters.

Motivated by those findings, we propose an otherwise standard forecasting model
that explicitly incorporates a non-stationary, unobservable trend component in the
data generation process. Specifically, in this model, the state variable consists of a
non-stationary random walk trend component and a cyclical component that follows
the standard AR(1) process. The goal of forecasters is to minimize the squared error
of their forecasts. The actual value of the state, which is the sum of these two compo-
nents, is publicly announced and observed by forecasters at the end of each period.

The key assumption is that forecasters cannot directly observe the actual realiza-
tions of the trend and cyclical components. Instead, in each period, they receive two
private noisy signals on the trend and cyclical components, respectively. This means
that they are unable to differentiate the two components perfectly and have to make
inferences about them.

In such a setting, forecasters will need to update their beliefs about the trend and
cyclical components twice in each period. At the beginning of each period, forecasters
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receive private signals regarding the trend and cyclical components and then revise
their beliefs on each component. Forecasters use this set of posterior beliefs to make
forecasts that minimize the expected forecasting errors. At the end of each period,
the actual state value is disclosed, which is informative about the trend and cyclical
components as well. Therefore, forecasters will have to update their beliefs again,
making revisions to their beliefs about the two components. That is the key difference
from the situation where forecasters could differentiate trends and cycles perfectly. In
that case, upon observing the actual state value, forecasters know the state perfectly,
rendering their beliefs about the two components when they make forecasts useless.

In this model, forecasters would make forecasting errors on both the trend and
cyclical components. In other words, they are to some extent confused about the two
components. For example, one might believe that the trend component is stronger
than it actually is, leading them to simultaneously believe that the cyclical component
is weaker than it actually is. In the following, we show that the confusion regarding the
trend and cyclical components helps account for the documented empirical patterns.

Specifically, in the presence of this confusion mechanism, a positive trend signal
plays a dual role. First, it provides information about the trend, indicating a strong
trend component in the current period. Consequently, forecasters revise their posterior
beliefs regarding the trend component upwards, from the prior beliefs inherited from
the previous period. Second, the positive trend signal is useful for updating beliefs
on the cyclical component. Forecasters rationally interpret the positive trend signal as
indicating three possibilities: a positive state innovation in the trend, a positive noise
in the signal, as well as an underestimation of the trend component in the preceding
period. Recognizing the likelihood of having underestimated the trend component
previously, forecasters would conclude that they had likely overestimated the cyclical
component previously. Consequently, they would revise their current beliefs regard-
ing the cyclical component downward.1

In summary, the confusion between trend and cyclical components leads forecast-
ers to rationally update their beliefs about these components in opposite directions.
This mechanism gives rise to a negative correlation between changes in forecasters’
trend beliefs and changes in their cyclical beliefs.

This mechanism can also account for the observed increase in forecast dispersion
over horizons. In this model, for any forecast horizon, the dispersion of forecasts can
be broken down into three parts: the dispersion caused by heterogeneous beliefs about
the cyclical and trend components, as well as their covariance. Similar to the predic-
tions of the standard model, the dispersion caused by heterogeneous beliefs about

1Likewise, upon receiving a positive signal about the cyclical component, forecasters would revise
their posterior beliefs about the cyclical component upwards from the prior beliefs inherited from the
previous period. Additionally, they would revise their belief about the trend component downwards,
as they aim to rectify the forecasting errors in their prior beliefs about the cyclical component.
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the cyclical component decreases over the forecast horizon, as the cyclical component
becomes less influential for longer-term forecasts. Further, the dispersion caused by
heterogeneous beliefs about the trend component is constant over the forecast hori-
zon, as the trend component is equally important for all horizons. The third part,
characterized by the negative covariance of beliefs regarding the two components, is a
novel aspect of the model. It stems from forecasters’ inability to perfectly distinguish
between trends and cycles, and its significance diminishes over the forecast horizon
as the cyclical component itself becomes less influential in forecasting. Therefore, the
overall dispersion could either increase or decrease over horizon. Our model predicts
that forecast dispersion increases as the forecast horizon extends, under the condition
that the trend is neither too volatile nor stable.
Application. Our framework not only helps organize the documented empirical find-
ings but also offers insights into various policy-relevant issues related to expectation
formation. To illustrate this, we examine the impact of implementing inflation target-
ing policy on forecasting behaviors. In 2012, the United States introduced an explicit
inflation target of 2 percent for the first time (Shapiro and Wilson (2019)). Through the
lens of our framework, this policy can be interpreted as a shift in the data-generating
process for inflation.

To uncover the corresponding change, we conduct structural estimation using the
simulated method of moments (SMM) for both pre-2012 and post-2012 periods. We
find that the only change is a substantial decrease in the persistence of the cyclical
component during the post-2012 period, while the estimated values for all other pa-
rameters remain largely the same across both periods. This observed change is intu-
itive, suggesting that after the policy shift, the central bank would respond more to
short-term deviations from the long-term target, thereby diminishing the persistence
of the cyclical component.

Furthermore, we have documented a set of changes in the pattern of inflation ex-
pectations across the two periods. First, using the inflation expectation data of the
pre-2012 subsample, we find a statistically significant negative correlation between
changes in forecasters’ trend beliefs and those of the cyclical beliefs. However, after
2012, this correlation becomes positive and statistically insignificant. Second, we ob-
serve a steeper decline in forecast dispersion over the horizon in the subsample post-
2012 compared to the preceding period. We show that these empirical patterns align
both qualitatively and quantitatively with the predictions of our model, contingent
upon a decrease in the persistence of cyclical components.
Extension. Furthermore, we demonstrate that our framework can be extended to
incorporate behavioral biases of forecasters that have been studied in the literature.
Specifically, we explore a scenario where forecasters exhibit overconfidence in new in-
formation, leading them to believe that the variances of signal noise are smaller than

4



their actual values. By investigating the interaction between overconfidence and the
new confusion mechanism, we unveil qualitatively different model predictions com-
pared to models lacking either of these features. We show that our model predictions
are empirically relevant: if the overconfidence is moderate, the now-cast error in the
current period will be positively correlated with the now-cast error in the previous
period, which is consistent with empirical findings from the SPF data.
Discussion. We also consider an alternative scenario where confusion between trends
and cycles arises because forecasters misinterpret signals. In this model, although
forecasters observe the trend and cyclical components at the end of a period, they must
still infer these components in the following period before making forecasts based on
trend and cycle signals. Some forecasters may mistakenly interpret a trend signal as a
cyclical one, and vice versa. We demonstrate that such misinterpretation can lead to
a negative correlation between the trend and cyclical beliefs among forecasters who
interpret the signals correctly and those who do not. On the one hand, this model
could also predict an increasing forecast dispersion over forecast horizons when the
fraction of forecasters who misinterpret signals is neither too large or too small. On the
other hand, this model always predicts a non-negative correlation between changes in
trend beliefs and cyclical beliefs, which contradicts the finding in the data.
Literature Review. Our work complements recent studies that utilize survey data to
investigate expectation formation. Research in the paradigm of noisy information has
revealed that forecasters tend to under-react to new information at the aggregate level
(Coibion and Gorodnichenko 2015), while exhibiting overreactions at the individual
level (Bordalo et al. 2020; Broer and Kohlhas 2022). New contributions to this litera-
ture further expand its scope. For instance, Kohlhas and Walther (2021) explore why
individual forecast errors are negatively correlated with current realizations, while
Rozsypal and Schlafmann (2023) examine how forecaster characteristics influence in-
dividual forecasts errors.

A common feature of these studies is that they assume the data-generating process
for the state is stationary, often an AR(1) process. Our work examines a scenario in
which the data generation process of the forecasted state incorporates a non-stationary
trend component which is not observable.2 Even in its simplest form, this framework
yields several predictions that align with a set of empirical facts concerning how fore-
cast behaviors vary over the forecast horizon.

Our work is related to Afrouzi et al. (2023). In their lab experiment, they show
that forecasting behaviors could vary over the forecast horizon, e.g., overreaction is
stronger for longer forecast horizons. We document how forecasting behaviors vary

2Early studies such as Nelson and Plosser (1982) and Harvey (1985) have demonstrated the presence
of a non-stationary trend component in GDP growth. Similar findings have also been observed in
studies analyzing inflation data, such as Cogley and Sargent (2005) and Cogley and Sbordone (2008).
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over the forecast horizon in the survey data and find that they can be informative
about how forecasters update beliefs and form expectations.

A number of studies have documented that forecast dispersion tend to be larger in
the long run.3 Lahiri and Sheng (2008) and Patton and Timmermann (2010) assume
that forecasters possess a diverse set of prior beliefs. As the forecast horizon extends,
forecasters assign less weight to new information and instead rely more on their prior
beliefs. Our model differs in that the confusion mechanism is rational rather than be-
havioral. Andrade et al. (2016) consider a case where forecasters can only occasionally
observe the state value (i.e., the sticky information assumption) and the current trend
shock has a more pronounced effect on the future state compared to its impact on the
current state. Our model features noisy information and the trend component holds
equal importance across all horizons. In addition, our model predicts that the changes
in trend beliefs and changes in cyclical beliefs can be negatively correlated.

Finally, the mechanism of confusion in our model is informational rather than
behavioral, distinguishing our approach from theoretical explorations that incorpo-
rate behaviorial biases, such as diagnostic expectations (Bordalo et al. 2018, Bianchi
et al. 2021), overconfidence (Broer and Kohlhas 2022), ambiguity aversion (Chen et al.
2024, Huo et al. 2023), cognitive discounting (Gabaix 2020), level-K thinking (García-
Schmidt and Woodford 2019, Farhi and Werning 2019), narrow thinking (Lian 2021),
adaptive learning (Adam et al. 2012, Kuang and Mitra 2016), autocorrelation aver-
aging (Wang 2021) and loss aversion (Elliott and Timmermann 2008, Capistrán and
Timmermann 2009). However, we demonstrate that this framework can be extended
to accommodate behavioral biases and the interaction between rational confusion and
behavioral biases is useful for addressing empirical puzzles in the literature.

2 Evidence

In this section, using the Survey of Professional Forecasters (SPF) of the U.S., we
present two empirical findings. Firstly, we document a negative correlation between
changes in forecasters’ trend beliefs and changes in their cyclical beliefs. Secondly,
we show that forecast dispersion among forecasters tends to increase as the forecast
horizon extends for most macroeconomic variables.

2.1 Survey of Professional Forecasters Data

The Survey of Professional Forecasters (SPF) of the U.S. is a source of predictions made
by professional forecasters regarding a broad range of macroeconomic variables. The
data is collected quarterly and goes back to 1968Q4. The Fed of Philadelphia surveys

3Farmer et al. (2024) provides a Bayesian learning model and stress that they focus on uncertainty
about the data generation process as a key information friction, instead of noisy information. Their
model could address a set of anomalies at the consensus forecast, leaving out discussion of forecast
dispersion. Our work, based on the paradigm of noisy information, examines the heterogeneity in
forecasting behaviors at the individual level over the forecast horizon.
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approximately 35 professional forecasters each quarter, assigning a unique ID number
to each forecaster to track their forecast history.

For each variable, a forecaster provides six predictions, including one back-cast
toward the previous period, a now-cast (forecast for the current quarter), and forecasts
for the subsequent four quarters. In addition, they are asked to provide The annual
projection of this variable for the current year, and the next year. Since 1991Q4, the
survey has included an extra question regarding the Consumer Price Index (CPI) for
a ten-year forecast. Since 1992Q1, the first quarter survey has included an additional
question about the GDP for a ten-year forecast, while since 1996Q3, the third quarter
survey has incorporated an additional question regarding the natural unemployment
rate. Starting from 2009, SPF has expanded to encompass year-level forecasts of the
unemployment rate and real GDP for two- and three-year periods.

The survey is conducted before the end of each quarter, following the Bureau of
Economic Analysis’ (BEA) advance report of the national income and product ac-
counts (NIPA) release. The BEA reports macroeconomic variables (e.g., GDP esti-
mates) for the preceding quarter. At the beginning of the questionnaire, forecasters
will be provided with the BEA reported value of the macro variable for the previous
quarter. Therefore, when giving their predictions for current and future quarters, fore-
casters have access to information about the values of forecasted variables up to the
last quarter.

2.2 Trend Beliefs and Cyclical Beliefs

To explore the influence of trends and cycles in the expectation formation process over
the horizon, we start our investigation by constructing proxies for forecasters’ beliefs
regarding trend and cyclical components. As discussed earlier, since 2009, the Survey
of Professional Forecasters (SPF) has asked forecasters each quarter to report their long
term forecasts for the unemployment rate and real GDP, precisely three years ahead.
Therefore, we employ forecaster i’s three-year ahead forecast at quarter t, denoted
as Fi,tyt+3Y, to represent her belief regarding the trend component. Furthermore, we
utilize the deviation of forecaster i’s now-cast at quarter t, denoted as Fi,tyt, from the
three-year ahead forecast to proxy her belief of the cyclical component. Specifically,
forecaster i’s belief of the cyclical component is constructed as follows:

Cyci,t = Fi,tyt − Fi,tyt+3Y.

However, there might be a concern that the three-year forecast horizon may not be
long enough to capture the long-term trend. To examine this conjecture, we utilize
two forecast series with even longer horizons: forecasts of real GDP ten years ahead
(available every first quarter since 1992Q1) and forecasts of the natural unemploy-
ment rate (available every third quarter since 1996Q3). We compare the predictions
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(a) Real GDP (b) Unemployment

Figure 1. Three years ahead predictions and predictions of longer horizons. Note: The sample period
is from 2009 to 2019, given the data availability. Predictions of the natural unemployment rate are
only available in the third quarter survey, and predictions of the ten-year-ahead real GDP are only
available in the first quarter survey. Figure 1(a) depicts the real GDP prediction for three years ahead
and ten years ahead. The correlation between the forecast on a three-year horizon and a longer horizon,
illustrated in the upper two figures, is 0.903 (Real GDP) and 0.886 (Unemployment).

for the three-year horizon with those for the longer horizon in the corresponding
quarters, specifically real GDP in every first quarter since 1992 and unemployment
in every third quarter since 1996. Figure 1 presents bin-scatter plots the relationship
between forecasts made for a three-year horizon with those for extended forecast hori-
zons. Specifically, Figure 1(a) illustrates the correlation between the forecasts of real
GDP three years ahead and those for a ten-year period, while Figure 1(b) presents the
correlation between forecasts of the unemployment rate for a three-year horizon and
forecasts of the natural unemployment rate. We find a high correlation between fore-
casts for the 3-year horizon and forecasts of longer horizons, reaching 0.903 for real
GDP and 0.886 for the unemployment rate, respectively. This indicates that the 3-year
horizon is likely adequate for proxying trend.

In addition, we provide further evidence in Appendix A.3 showing that the three-
year-ahead forecasts are highly correlated with trend estimates derived from actual
data using the HP filter. Trend estimates obtained using the HP filter do not reflect
the heterogeneous trend beliefs of forecasters, but the high correlation between these
estimated trends and the trend beliefs we construct is reassuring.

2.3 Changes in Trend Beliefs and Changes in Cyclical Beliefs

In this section, we construct a novel empirical test using changes in forecaster’s trend
beliefs and cyclical beliefs across periods. The correlation of these changes informs
their roles in the expectation formation process. Specifically, if the forecasted variable
follows an AR(1) process or a general stationary data generation process, the standard
forecasting model predicts that the correlation is zero. This is because cross-period
changes in cyclical beliefs reflect new information regarding the cyclical components
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Table 1. Changes in Trend Beliefs and Changes in Cyclical Beliefs

Dependent Variable: Trend belief changes

Baseline Time FE

Unemployment Real GDP Unemployment Real GDP

(1) (2) (3) (4)

Cyclical belief changes -0.948*** -0.252*** -0.930*** -0.776***
(0.063) (0.052) (0.021) (0.052)

Time FE NO NO YES YES
Obs. 794 783 788 779
R-sq 0.753 0.273 0.928 0.783
Note: This table shows the coefficients estimated from Equation 1. The sample period using the three-year
ahead forecast spans from 2009Q1 to 2019Q4. Columns (1) and (2) present the baseline estimation result.
Columns (3) and (4) present the estimation result with year-quarter fixed effect. The estimation result indicates
a negative correlation between the belief changes in the two components.

between quarters t and t − 1, while updates in trend beliefs reflect new information
regarding the trend components between quarters t and t− 1. This prediction is char-
acterized in section 4.1.

To investigate, we estimate the following equation:

Fi,tyt+3Y − Fi,t−1yt−1+3Y︸ ︷︷ ︸
change in trend belie f

= α + β2 (Cyci,t − Cyci,t−1)︸ ︷︷ ︸
change in cyclical belie f

+εi,t. (1)

The left-hand side of Equation (1) approximates changes in trend beliefs by utilizing
the difference between three-year ahead forecasts across periods. The right-hand side
represents the difference in cyclical beliefs across periods. The coefficient β2 captures
the correlation between changes in trend beliefs and changes in cyclical beliefs.

Columns (1) and (2) of Table 1 presents the estimation results of Equation (1), using
unemployment and real GDP forecast data. Columns (3) and (4) of Table 1 present the
estimation results, after controlling quarter fixed effects. The estimated coefficients in-
dicate a significant, negative correlation between changes in trend beliefs and changes
in cyclical beliefs. In other words, when a forecaster adjusts their belief upwards re-
garding cyclical components from that of the last period, they tend to adjust their
beliefs for trend components downwards from that of the last period, and vice versa.

We conducted a robustness check by using one-year-ahead forecasts as a proxy for
trend beliefs, in place of the three-year-ahead forecasts used to proxy trend beliefs. The
advantage of this approach is that it allows us to explore a broader range of macroe-
conomic variables, given the data availability. The disadvantage is that we anticipate
that this measure of trend beliefs may be contaminated by cyclical information, as a
one-year horizon may not be sufficiently long to capture long-term trends cleanly. If
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Table 2. Correlation between Changes in Trend Beliefs and Cyclical Beliefs

Baseline Time FE

Obsβ SD β SD

Forecast Variable (1) (2) (3) (4)

Nominal GDP -0.702*** 0.010 -0.774*** 0.038 3,296
Real GDP -0.468*** 0.044 -0.806*** 0.081 3,359
GDP price index inflation -0.752*** 0.017 -0.757*** 0.037 3,274
Real consumption -0.539*** 0.020 -0.709*** 0.045 3,234
Industrial production -0.226 0.156 -0.899*** 0.086 3,047
Real nonresidential investment -0.078*** 0.022 -0.709*** 0.033 3,140
Real residential investment -0.109*** 0.020 -0.527*** 0.055 3,145
Real federal government consumption -0.188 0.170 -0.694*** 0.153 2,980
Real state and local government consumption -0.354*** 0.057 -0.811*** 0.043 2,918
Housing start -0.111*** 0.025 -0.332*** 0.037 3,235
Unemployment -0.869*** 0.085 -0.910*** 0.021 3,757
Inflation rate (CPI) -0.051* 0.030 -0.151*** 0.050 3,696
Three-month Treasury rate -0.755*** 0.038 -0.871*** 0.034 3791
Ten-year Treasury rate -0.794*** 0.024 -0.889*** 0.018 3102
Note: This table shows the coefficients from estimating Equation 1 using one-year ahead forecast as proxy of
the trend belief. Column (1) presents the baseline estimation result. Column (3) presents the estimation result
with year-quarter fixed effect.

this is the case, the correlation under consideration should be positive, as both changes
are driven by the same set of new information.

Table 2 presents the results for a broad range of macroeconomic variables with
and without quarter fixed effects. In this robustness check, we continue to observe
a negative relationship between changes in trend beliefs and cyclical beliefs for most
macroeconomic variables.

In summary, these empirical findings challenge the commonly used assumption of
stationary forecasted macroeconomic variables. It’s worth noting that even if the data
generation process allows non-stationary trends, changes in trend beliefs and cyclical
beliefs should still be uncorrelated, provided that innovations in trends and cycles are
independent over time.

2.4 Forecast Dispersion over Forecast Horizon

In this section, we explore whether the dispersion in forecasts across forecasters varies
as the forecast horizon extends. This analysis is informative in understanding the role
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Table 3. Forecast dispersion over forecast horizon

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.026 0.204*** 0.008 1,025
Real GDP 0.242*** 0.022 0.162*** 0.007 1,025
GDP price index inflation 0.118*** 0.008 0.119*** 0.004 1,025
Real consumption 0.125*** 0.013 0.127*** 0.006 770
Industrial production 0.860*** 0.062 0.320*** 0.014 1,025
Real nonresidential investment 1.647*** 0.127 0.497*** 0.018 770
Real residential investment 6.021*** 0.547 0.932*** 0.039 770
Real federal government consumption 1.284*** 0.102 0.393*** 0.019 770
Real state and local government consumption 0.317*** 0.028 0.210*** 0.009 770
Housing start 0.004*** 0.000 0.020*** 0.001 1,024
Unemployment 0.034*** 0.002 0.081*** 0.003 1,014
CPI -0.066*** 0.021 -0.073*** 0.012 770
Three-month Treasury rate 0.053*** 0.002 0.106*** 0.005 560
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.003 560
Note: This table shows the coefficients from estimating Equation 2. The sample period is from 1968Q4 to 2019Q4. In
column (1), we directly use the forecast variance. In column (3), we use the difference between the 25% percentile and
50% percentile. All the standard error is clustered by year-quarter.

of beliefs concerning trends and cycles.4 We estimate the following equation:

Forecast dispersionth = α + β1h + εt, (2)

where Forecast dispersionth represents the cross-forecaster dispersion in forecasts Fi,tyt+h

provided by forecaster i at period t for h quarters ahead and the forecast horizon is de-
fined as h = 0, 1, 2, 3, 4. The standard error is clustered at the year-quarter level.

We use forecast data for different macroeconomic variables to estimate Equation
(2). We consider two measures of forecast dispersion: the variance of forecasts and the
difference between the 75th percentile and the 25th percentile. The estimated coeffi-
cient β1 is of particular interest and is presented in Table 3.

Column (1) of Table 3 presents the results using forecast variance as the measure
of forecast dispersion. The coefficient for the forecast horizon h is positive (β2 > 0)
and statistically significant for most variables, indicating that forecasts among fore-
casters become more dispersed as the forecast horizon increases. The only exception
is CPI (inflation). We will revisit the analysis of inflation expectations in section 5.1.
In column (3), we repeat our estimations using the difference between the 75th and

4In the literature, several studies have investigated this particular pattern. Lahiri and Sheng (2008)
use the Consensus Forecasts data and show that the forecast dispersion of real GDP growth is larger in a
longer forecast horizon for all the G7 countries. Patton and Timmermann (2010) utilize the same data
and find that both the forecast dispersion regarding the U.S. GDP growth and inflation is higher at
longer horizons. Andrade et al. (2016) study the data from Blue Chip Survey and find a steady increase
in the dispersion of Federal Fund rate forecasts as the forecast horizon extends.
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(a) Real GDP rate (b) Unemployment rate

Figure 2. Variance of the year level prediction. Note: The figure shows the estimation result from
Equation (3). The left figure shows the estimation result for Real GDP, and the right figure shows the
result using the unemployment rate. The sample period is from 2009Q1 to 2019Q4. In both cases, βH
is greater than zero and increases as H increases, which indicates a larger dispersion as the forecast
horizon expands.

25th percentiles as the measure of forecast dispersion. The results are rather similar.
To confirm that the pattern is robust to the inclusion of time fixed effect, we report the
estimation results with time fixed effect in appendix A1.

A potential concern is that forecasting four quarters ahead is indicative of a medium-
run forecast, and the findings in Table 3 may not be informative about the pattern of
long-run forecasts. We employ a number of additional tests to address this concern.
First, we focus on a subset of variables with yearly forecast data spanning an extended
horizon. Beginning from 2009Q1, the U.S. SPF incorporates forecasts for real GDP and
the unemployment rate one year, two years, and three years into the future. To inves-
tigate whether the observed pattern persists, we employ this dataset and estimate the
following specification:

Var(Fi,tyt+H) = α2 +
3

∑
H=1

βH horizonH + εt, (3)

where horizonH is a dummy variable for horizon H, taking the value 1 if the forecast
horizon is H = 1 year, 2 years, or 3 years ahead; and 0 otherwise. The coefficient
βH captures the difference in forecast dispersion between forecasts H years ahead and
current year predictions (H = 0).

Figure 2(a) on the right illustrates the estimation result using real GDP data, while
Figure 2(b) presents the counterpart for the unemployment rate. In both cases, the
coefficients βH are positive and greater as the forecast horizon becomes larger. This is
consistent with our previous finding that the dispersion of forecasts increases as the
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forecast horizon expands.
In addition, we provide an additional test that can be informative about the forecast

dispersion across different horizons is to examine the forecast dispersion of U.S. gov-
ernment treasury securities with different maturities, specifically three months (Trea-
sury bills) and ten years (Treasury bonds). The price of both securities is affected by the
same information set. The key distinction between them lies in their respective matu-
rities. In other words, the price of Treasury bonds is contingent upon beliefs about the
state of the U.S. economy over a longer time horizon. When forecasters exhibit greater
disagreement in their predictions for the long-term U.S. economy, it is expected that
the forecast dispersion for Treasury bonds will be larger compared to Treasury bills.
Appendix A.4 provides evidence confirming this conjecture.

3 Forecasting Model with Trend-cycle Confusion

3.1 Setup

Utility function. In this model, there exists a continuum of forecasters, indexed by
i ∈ [0, 1], who make forecasts about a stochastic state variable yt. The objective of the
forecasters is to minimize forecasting errors. We consider a standard quadratic utility
function, which is given by:

U(Fi,tyt+h) = −(Fi,tyt+h − yt+h)
2, (4)

where yt+h is the actual value of the state in period t + h and Fi,tyt+h denotes the
forecast made by forecaster i at period t for the state h periods in the future.
Data generation process. We assume that the state variable yt is composed of two com-
ponents: a trend component, µt, representing long-term trend, and a cyclical compo-
nent, xt, capturing short-term fluctuations. In particular, the trend follows a random
walk process, while the cycle is modeled as an AR(1) process. Specifically, the data
generation process for the state can be described as follows:

yt = µt + xt,

µt = µt−1 + γ
µ
t ,

xt = ρxt−1 + γx
t ,

where ρ is the persistence for the AR(1) process and γ
µ
t and γx

t are the innovations of
the trend and cyclical components, both of which are normally distributed with zero
mean and variances of σ2

µ and σ2
x , respectively, i.e.,γµ

t ∼ N(0, σ2
µ) and γx

t ∼ N(0, σ2
x).

We use θt = (µt, xt)′ to denote the state components in period t. Consistent with
the previous literature, we assume that the data generating process (DGP) is common
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knowledge for all forecasters.
In each period, forecasters receive private noisy signals for each component, that

is, si,t = (sµ
i,t, sx

i,t)
′, where

sµ
i,t = µt + εi,t; and sx

i,t = xt + ei,t. (5)

We assume that the error terms of the signals are independent and normally dis-
tributed. The variance-covariance matrix of i’s private signals is given by:

Σs =

(
σ2

ε 0
0 σ2

e

)
.

At the end of each period t, we allow forecasters to observe the actual state variable
yt but not the trend and cyclical components. Therefore, upon the announcement of
the actual state value, forecasters revise their beliefs regarding the trend and cyclical
components. The updated beliefs about the two components become the prior beliefs
for the next period.

Throughout the paper, we use θi
1,t to represent forecaster i’s posterior belief after

forecaster i receive signals about the trend and cyclical components in period t (i.e., the
first update). Similarly, θi

2,t represents forecaster i’s posterior belief after they observe
the actual realization of the state in period t (i.e., the second update). The subscript 2
stands for the second time updating in period t.
Timeline. We summarize the timeline of our setting in Figure 3:

• At the beginning of period t, forecaster i is endowed with the prior belief θi
2,t−1,

which is the posterior of the second updating from the period t− 1.

• Forecaster i observes the private signal si,t and then update her belief accord-
ingly (the first updating).

• Given the updated beliefs θi
1,t, forecasters choose their optimal forecasts of the

current and future period Fi,tyt+h.

• At the end of period t, yt is revealed.

• Forecasters revise their beliefs again, forming beliefs θi
2,t (the second updating).

3.2 Equilibrium Characterization

In this section, we turn to the characterization of forecasters’ optimal forecasts. We
start our analysis by considering the posterior belief obtained from the second update

14



Forecasts Fi,t−1yt−1+h θi2,t−1 θi1,t Forecasts Fi,tyt+h θi2,t

yt−1 si,t yt

Figure 3. Timeline. In each period t, forecaster i will update his belief twice. Firstly, based on the
observed private signals, forecaster i adjusts his beliefs and provides forecasts for the current and future
periods,i.e., Fi,tyt+h. Secondly, forecaster i revises his belief regarding the trend and cycle upon observing
the actual realization of the state variable. The diamond box is on behalf of the exogenous information.
The squared box stands for the forecaster’s belief.

in period t− 1, which is the prior belief of forecaster i at the beginning of period t:

θi2,t−1 = (µi
2,t−1, ρxi

2,t−1)
′,

where µi
2,t−1 and xi

2,t−1 are forecaster i’s beliefs about trend and cyclical components
at the end of period t− 1, respectively. This set of beliefs µi

2,t−1 and xi
2,t−1 can always

be written in the form:

µi
2,t−1 ≡ µt−1 + zi,t−1 and xi

2,t−1 ≡ xt−1 − zi,t−1, (6)

s.t. µi
2,t−1 + xi

2,t−1 = yt−1,

where zi,t−1 captures the error in forecaster i’s beliefs regarding the trend and cyclical
components at the end of period t − 1. Throughout the remainder of the paper, we
denote zi,t−1 as the separation error. Given the restriction that actual yt−1 is released
and observed at the end of t− 1, the two components µi

2,t−1 and xi
2,t−1 must sum up

to yt−1. In other words, this condition imposes a restriction such that the error terms
in the two components are of the same magnitude but opposite in sign.

Denote the variance of zi,t−1 as σ2
z,t−1, then the variance-covariance matrix of θi2,t−1

follows:

Σθi
2,t−1

=

(
σ2

z,t−1 + σ2
µ −ρσ2

z,t−1

−ρσ2
z,t−1 ρ2σ2

z,t−1 + σ2
x

)
.

The covariance matrix Σθi
2,t−1

indicates that forecasters subjectively perceive a neg-
ative correlation between the trend and cyclical components. Intuitively, if a forecaster
believes that the trend is stronger than it actually is, she will tend to believe that the
cyclical component is weaker than it actually is, and vice versa. Note that when fore-
casters can perfectly distinguish between the trend and cyclical components, the co-
variance will be zero.

Lemma 1. Suppose zi,t−1, the separation error in period t− 1, is normally distributed.
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Then zi,t must also be normally distributed, and there exists a steady state σ2
z for the

variance σ2
z,t.

The proof and subsequent proofs are collected in Appendix B. Firstly, if the separa-
tion error follows a normal distribution in one particular period, it will continue to be
normally distributed indefinitely, given that both the state innovations and signals are
also normally distributed. Secondly, the variance σ2

z,t always converges to a steady-
state value, σ2

z , which represents the extent of confusion in distinguishing between the
trend and cyclical components. Throughout the paper, we assume that the separation
error zi is normally distributed and in the steady state.

Lemma 2. In period t, after acquiring the private signals si,t, forecaster i updates
her beliefs on the trend and cyclical components and form her beliefs θi

1,t, which is
joint-normally distributed. The expectations of these beliefs are given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1), (7)

where κ is the Kalman gain and (si,t − θi
2,t−1) is the surprise from signals:

κ =

 V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ε σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ε (σ

2
x+ρ2σ2

z )
Ω

 and si,t − θi
2,t−1 =

(
sµ

i,t − µi
2,t−1

sx
i,t − ρxi

2,t−1

)
.

The variance-covariance matrix of θi
1,t is given by:

(Σ−1
s + Σ−1

θi
2,t−1

)−1 =

(
VarT C̃OV
C̃OV VarC

)
=

 σ2
ε [Ω−σ2

ε (σ
2
x+σ2

e +ρ2σ2
z )]

Ω − ρσ2
e σ2

ε σ2
z

Ω

− ρσ2
e σ2

ε σ2
z

Ω
σ2

e [Ω−σ2
e (σ

2
ε+σ2

µ+σ2
z )]

Ω

 ,

(8)

where Ω and V are positive constants:

Ω = (σ2
z + σ2

µ + σ2
ε )(σ

2
x + σ2

e + ρ2σ2
z )− ρ2σ4

z and V = (σ2
z + σ2

µ)(σ
2
x + ρ2σ2

z )− ρ2σ4
z .

The Kalman gain matrix κ has two parts. The elements on the main diagonal resemble

those in the standard belief updating. That is, forecasters use signals about the trend
(cycle) to update their beliefs on the trend (cycle).

When there is no confusion (i.e., σ2
z goes to zero), the model reduces to the standard

Bayesian case. In this scenario, the Kalman gain for the trend component reduces
to σ2

µ/(σ2
µ + σ2

ε ), and for the cyclical component, it reduces to σ2
x /(σ2

x + σ2
e ). When

there is confusion (i.e., σ2
z > 0), the Kalman gain becomes larger than the Bayesian

case without confusion. In other words, the confusion mechanism leads to less precise
prior beliefs, and forecasters rely more on the signals, which provide new information.
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A similar argument holds true for the Kalman gain for the cyclical component.
Crucially, the non-zero elements on the sub-diagonal of the Kalman gain matrix

indicate that forecasters incorporate the signal on the trend (cycle) component when
updating their beliefs about the cyclical (trend) component. Consider a scenario where
the private signal indicates that the cyclical component is stronger than the forecaster’s
prior belief. This situation could arise from three possibilities: Firstly, it might reflect
a substantial innovation in the cyclical component itself. Secondly, it could be due to
positive noise in the signal. Thirdly, it might suggest that the actual value of the cycli-
cal component in the previous period was larger than what the forecaster believed.
As forecasters cannot know the true value of each component with certainty, they will
adjust their prior beliefs by increasing their estimate of the cyclical component from
the last period and correspondingly decreasing their estimates of the trend component
for both the last and current periods.

The variance-covariance matrix in Equation (8) warrants further discussion. Firstly,
the elements on the main diagonal correspond to the perceived variance of the trend
and cyclical components, which are influenced by the confusion mechanism. These
variances are larger compared to the case where there is no confusion (i.e., the compo-
nents can be perfectly observed). We denote them as VarC and VarT, respectively.

Secondly, the elements on the sub-diagonal components are non-zero and negative.
That is, forecasters cannot perfectly distinguish between the trend and cycle, which
gives rise to a negative covariance between the beliefs of these two components. Intu-
itively, when there are strong positive signals about the cyclical component, forecasters
will simultaneously revise the cyclical component upward and the trend component
downward. We denote this covariance as C̃OV.

Finally, we turn to the stage of making forecasts. Forecaster i makes a series of
forecasts about the state in h periods ahead. Under a quadratic utility function, her
optimal prediction is the expected value of the state variable.

Lemma 3. The optimal forecast of forecaster i over horizon h is determined by their
beliefs of trend and cyclical components, i.e.,

Fi,tyt+h = Ei,t[µt + ρhxt] = µi
1,t + ρhxi

1,t.

This lemma says that the trend and cyclical beliefs play different roles over forecast

horizons: the trend belief consistently influences predictions across all horizons, while
the influence of the cyclical belief diminishes as the forecast horizon extends.
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4 Forecasts over Horizon: Main Results

4.1 A Special Case with Observable Trends and Cycles

Before presenting our model predictions regarding forecasting behaviors over the fore-
cast horizon, we first examine a special case where trends remain stochastic, but fore-
casters can observe the actual trend component along with the state value at the end of
each period. This means forecasters can perfectly distinguish between the trend and
cyclical components. In essence, the key information friction in our model is absent
in this special case, while all other assumptions remain unchanged. Consequently, the
separation error becomes zero (i.e., zi,t = 0) and the variance of the separation error
also reduces to zero (i.e., σ2

z = 0). Contrasting this special case and our benchmark
model helps illustrate the importance of the information friction arising from trends
and cycles not being separable.

When the forecasters can perfectly separate the two components, both the Kalman
gain matrix in Equation (7) and the variance-covariance matrix in Equation (8) become
standard:

κ =

 σ2
µ

σ2
µ+σ2

ε
0

0 σ2
x

σ2
x+σ2

e

 and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=

 σ2
ε σ2

µ

σ2
ε+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e

 .

In this scenario, the sub-diagonal elements of the Kalman gain matrix are zero, indi-
cating that forecasters do not use information from the trend or cyclical component to
update their beliefs about the other. That is, they treat these components as indepen-
dent, resulting in zero covariance (i.e., C̃OVs = 0).

In the following, we investigate whether this model could help address the two
empirical patterns documented in section 2. We first examine the relationship between
changes in trend beliefs and cyclical beliefs. In the empirical section, we proxy trend
belief using the three-year (i.e., h = 3Y) ahead forecast. The changes in trend beliefs
and cyclical beliefs can be written as follows:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (Ei,t[µt]− Ei,t−1[µt−1]) + ρ3Y(Ei,t[xt]− Ei,t−1[xt−1]),

Cyci,t − Cyci,t−1 = (1− ρ3Y)(Ei,t[xt]− Ei,t−1[xt−1]).

Therefore, the model predicts a non-negative correlation between changes in trend
and cyclical beliefs:

cov(Fi,tyt+3Y− Fi,t−1yt−1+3Y, Cyci,t−Cyci,t−1) = ρ3Y(1− ρ3Y)Var(Ei,t[xt]−Ei,t−1[xt−1]) ≥ 0.

It holds because the belief updating of trend and cyclical components is independent
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(i.e., C̃OVs = 0) and the covariance between the changes in trend beliefs and cyclical
beliefs is zero, i.e., cov(Ei,t[µt]− Ei,t−1[µt−1], Ei,t[xt]− Ei,t−1[xt−1]).

Furthermore, in this special case, the forecast variance across forecasters can be
decomposed into two components:

Var(Fi,tyt+h) = ρ2hVar(Ei,t[xt]) + Var(Ei,t[µt]) = ρ2hVarC
s + VarT

s . (9)

As the forecast horizon increases, the dispersion across forecasters caused by their
noisy information on the cyclical component becomes less significant, i.e., ρ2h de-
creases in h quickly. However, the dispersion caused by their noisy information on
the trend component remains stable over the horizon. As a result, the total dispersion
decreases monotonically over the forecast horizon.

In summary, in this special case where trends and cycles are separable, the model
fails to generate either of the two empirical patterns documented. In fact, its predic-
tions are exactly opposite to the observed patterns in the data. We further extend this
special case by allowing the data generation process to be a general ARMA model
instead of an AR(1). However, this does not alter the model predictions. Further dis-
cussion of this result is provided in Appendix B. Moving forward, we will elaborate
on the scenario where the two components are not perfectly separable, and show that
the model predictions can be reversed.

4.2 Covariance of Beliefs and Confusion

The key difference between our benchmark model and the previously discussed spe-
cial case is that forecasters cannot perfectly observe trends and cycles. As a result,
their beliefs about these two components are correlated, even when they are, in fact,
independent. In this section, we will first analyze the covariance between forecast-
ers’ beliefs regarding trends and cycles after they have observed their private signals.
Then, we will turn to the covariance after they have observed the actual value of the
state. We refer to the former as “covariance of beliefs” and the latter as “confusion.”

The covariance of beliefs is captured by C̃OV in Equation (8). It is expected that
it depends on volatility of each component and the persistence of the cyclical compo-
nents. Lemma 4 provides the corresponding characterization.

Lemma 4. (i) There exists a threshold σ̃2
µ for the variance of the trend innovation, such

that the magnitude of the covariance between the trend and cyclical beliefs increases
with σ2

µ when σ2
µ ∈ (0, σ̃2

µ] and decreases with σ2
µ when σ2

µ ∈ (σ̃2
µ,+∞). (ii) The mag-

nitude of the covariance increases with the persistence of the cyclical component (ρ).

To understand part (i), recall the covariance is characterized by C̃OV = −ρσ2
ε σ2

e σ2
z /Ω.

As the variance of trend innovations (σ2
µ) increases, two effects emerge. Firstly, Lemma
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1 has shown that forecaster i’s confusion, represented by σ2
z , increases. Secondly, fore-

caster i’s uncertainty about the state, represented by Ω, also increases. When the vari-
ance of trend innovations remains relatively small, the increase in confusion (σ2

z ) dom-
inates. Conversely, when it is relatively large, the increase in overall variance (Ω)
dominates. Consider the following two polar cases. When the trend is stable (i.e.,
σ2

µ = 0), there is no confusion (i.e., σ2
z = 0). Therefore, the covariance is zero. When

the innovation is very large (i.e., σ2
µ → ∞), forecaster i’s uncertainty about the state

is also very large (i.e., Ω → ∞), the confusion mechanism is less relevant, and the
covariance converges to zero too.

To understand part (ii), we first examine an extreme scenario where the persistence
of the cyclical component approaches zero (ρ = 0). In this instance, the cyclical com-
ponent becomes independent over time. Consequently, signals regarding the cyclical
components offer information solely about the cyclical components, which are unin-
formative for the trend components. As a result, the covariance of beliefs regarding
the two components is rendered to be zero. As the persistence of the cyclical compo-
nent increases, signals regarding the cyclical components become more valuable for
revising trend beliefs, giving rise to a larger covariance in magnitude.

Next, we turn to the analysis of confusion. After the forecasters have observed the
actual value of the current state (yt), they revise their beliefs again. This set of posterior
beliefs becomes the prior beliefs for the next period. The forecasting error present in
this set of posterior beliefs is the separation error (zi,t). Lemma 5 characterizes its
construction.

Lemma 5. Upon observing the actual state value yt, the separation error zi,t present
in the posterior beliefs is given by:

zi,t =
(VarT + C̃OV)(xt − xi

1,t)− (VarC + C̃OV)(µt − µi
1,t)

(VarT + C̃OV) + (VarC + C̃OV)
. (10)

The variance of the separation error (σ2
z ) is bounded:

0 ≤ σ2
z ≤ min{VarC, VarT}. (11)

Furthermore, σ2
z increases as σ2

µ, σ2
x , σ2

e , and σ2
ε increase, and converges to zero if any

of these parameters goes to zero.

Recall that VarT and VarC represent the variances of forecasters’ posterior beliefs
regarding the trend and cyclical components, respectively, while C̃OV denotes the
corresponding covariance between the two components, as shown in Equation (8).

Lemma 5 states that the separation error after forecasters observe the actual state,
is a weighted combination of the error terms in forecasters’ beliefs regarding the trend
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and cyclical components before they observe the actual state. If they over-predict the
trend component (i.e., µt − µi

1,t < 0), then zi,t tends to be positive. Conversely, if they
over-predict the cyclical component (i.e., xt − xi

1,t < 0), then zi,t tends to be negative.5

Note that after observing the actual state value, the covariance between beliefs
regarding the trend and cyclical components is represented as −σ2

z . The extent of con-
fusion, denoted by σ2

z , is influenced by two primary factors: the quality of signals and
the volatility of the state variables. First, forecasters receive private signals about each
component in every period, which help them differentiate between the two. Conse-
quently, more accurate signals decrease the level of confusion. Second, when the state
innovations in the trend or cyclical component are more volatile, it becomes more dif-
ficult to identify each component, resulting in a higher level of confusion. Intuitively,
the confusion is upper bounded by the uncertainty in either the trend or cyclical com-
ponents

4.3 Correlation between changes of trend beliefs and cyclical beliefs

In this section, we investigate the model prediction of the relationship between changes
in trend beliefs and cyclical beliefs. We show that, with the confusion mechanism, our
model can produce either a positive or negative correlation. Proposition 1 presents
relevant necessary and sufficient conditions.

We begin our analysis by decomposing both the right-hand side (RHS) and left-
hand side (LHS) of Equation (1). The changes in belief regarding the forecast for h
periods ahead (represented by Fi,tyt+h− Fi,t−1yt−1+h) consist of changes in one’s beliefs
about both the cyclical and trend components:

Fi,tyt+h − Fi,t−1yt−1+h = µi
1,t − µi

1,t−1 + ρh(xi
1,t − xi

1,t−1).

When horizon h is sufficiently long, the term Fi,tyt+h− Fi,t−1yt−1+h captures the change
in trend beliefs, as ρh becomes very small. The changes in the short-run beliefs consist
only the belief changes regarding the cyclical component:

Cyci,t − Cyci,t−1 = (1− ρh)(xi
1,t − xi

1,t−1).

Therefore, the covariance between the changes regarding the trend beliefs and

5Consider a special case nested in Equation (10). When the trend is stable (i.e., σ2
µ = 0), forecasters

can predict the trend component perfectly. Therefore, the error term in their beliefs regarding the trend
component is zero. In this scenario, both the variance of the belief regarding the trend component (VarT)
and the covariance (C̃OV) would also be zero. As a result, the separation error in this case would be
zero.
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Figure 4. The state innovation and the correlation of changing in trend and changing in cycle. For a
pair of state innovation σ2

µ, σ2
x , the model predicts a negative correlation between the updating in the

short-run and the updating in the long-run if it lies inside the line(Region I), and a positive correlation
if it lies in Region I I. For this particular illustration, we have chosen h = 4, σ2

ε = 3, and σ2
e = 2.

cyclical beliefs can be decomposed into two parts:

cov(Fi,tyt+h − Fi,t−1yt−1+h, Cyci,t − Cyci,t−1) (12)

= (1− ρh)

 cov(µi
1,t − µi

1,t−1, xi
1,t − xi

1,t−1)︸ ︷︷ ︸
covariance between changes in trend and cycle (−)

+ρh var(xi
1,t − xi

1,t−1)︸ ︷︷ ︸
variance o f changes in cycle (+)

 .

The first term within the bracket of Equation (12) denotes the covariance between
the change in forecaster i’s belief regarding the trend component and the change in
belief regarding the cyclical component. This term is always negative because it re-
duces to the subjective covariance between beliefs regarding trends and cycles (C̃OV),
which says any new information that increases the forecaster’s belief regarding the
trend component will simultaneously decrease their belief in the cyclical component,
and vice versa. The second term represents the variance of forecaster i’s belief changes
regarding the cyclical component, which is always positive. Proposition 1 presents the
necessary and sufficient conditions for the sum of the two terms to be negative.

Proposition 1. There exists a threshold σ2
µ for the variance of the trend component innova-

tion, such that:
(i) for any σ2

µ ∈ [σ2
µ,+∞), changes in the trend beliefs and changes in cyclical beliefs are posi-

tively correlated.
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(ii) for any σ2
µ ∈ (0, σ2

µ), there exists a threshold σ2
x such that changes in trend beliefs and

changes in cyclical beliefs are negatively correlated if and only if σ2
x < σ2

x; and they are posi-
tively correlated, otherwise.

Figure 4 illustrates how the sign of this correlation changes as the variance of the
trend and cyclical innovation varies. For a given pair of signal precisions (σ2

ε and σ2
e ),

the model predicts a negative correlation when the trend component is moderately
stable, and the cyclical component is not excessively volatile (i.e., within the region
enclosed by the solid line in Figure 4).

Intuitively, changes in trend beliefs and cyclical beliefs exhibit a negative corre-
lation when the covariance between beliefs about the two components is dominant.
As shown in Lemma 4, this scenario only occurs when the trend component is nei-
ther too stable nor too volatile. In addition, as the variance of the cyclical innovation
(σ2

x) increases, the variance of belief changes concerning the cyclical component (rep-
resented by the second term of Equation (12)) also increases. However, if the cyclical
component is too volatile, the confusion mechanism becomes less relevant. We show
the existence of a threshold σ2

x for this volatility, such that changes in trend beliefs and
cyclical beliefs exhibit a negative correlation when σ2

x is lower than this threshold.

4.4 Forecast dispersion

We proceed to examine the prediction of our model regarding the relationship between
the forecast dispersion and the forecast horizon. In our model, the forecast dispersion
can either increase or decrease as the forecast horizon becomes longer. Proposition
2 characterizes the necessary and sufficient conditions for the forecast dispersion to
increase or decrease over the forecast horizon.

To illustrate the mechanism, we decompose the dispersion of forecasts across fore-
casters for any horizon into three components: the variance arising from heteroge-
neous beliefs about the trend component, the cyclical component, and their covari-
ance. To be specific, the forecast variance is given by:

E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCφC + VarTφT + 2ρhC̃OVφCOV , (13)

where 0 < φC < 1, 0 < φT < 1 and 0 < φCOV < 1 are positive scalars, which are
contained in the proof of Proposition 2.

Figure 5 depicts the changes in the magnitude of each part as the forecast horizon
extends. Figure 5(a) demonstrates that as the forecast horizon extends, the variance
caused by heterogeneous beliefs about the cyclical component diminishes. This re-
duction in variance is due to the decreased influence of the cyclical component in
longer-term forecasts. Figure 5(b) shows that the forecast variance caused by the het-
erogeneous beliefs regarding the trend component remains constant across all forecast
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Figure 5. Dispersion changes as the horizon extends. Note: This figure shows how the magnitude of
each part of the variance changes as the forecast horizon extends. For this specific illustration, we use
σ2

e = 2, σ2
ε = 3, σ2

x = 2, σ2
µ = 3 and ρ = 0.7.

horizons. It is intuitive because the influence of the trend component is the same
across the forecast horizon. How these two components vary over different horizons
resembles the behavior observed in the standard model (see section 4.1).

Figure 5(c) depicts the magnitude of the covariance term, which decreases as the
forecast horizon extends. That is also caused by the diminished importance of the
cyclical component over horizons. This feature, though intuitive, is crucial for under-
standing our model results. On the one hand, the negative covariance term reduces
overall forecast dispersion across forecasters for any horizon. On the other hand, as
the forecast horizon extends, the influence of the covariance term diminishes, leading
to an increase in observed forecast dispersion.

Whether the forecast dispersion increases or decreases in a longer forecast horizon
is determined by the relative strength between the two forces: the diminishing force
that originates from the cyclical variance and the increasing force that stems from the
covariance term.

Proposition 2. The dispersion of forecasts across forecasters is strictly increasing in the fore-
cast horizon h, if and only if:

h > h =
1

ln ρ
ln
−C̃OV
VarC

φCOV

φC W; (14)

where W < 1 is a positive scalar given by E[(zi,t − E[zi,t])
2]/σ2

z and ln ρ < 0.

Proposition 2 states that the forecast dispersion is increasing in the forecast horizon
when h is large enough. To understand, we note that the forecast horizon h has a
greater impact on the variance of cyclical beliefs than on the covariance between trend
and cyclical beliefs. That is, the former converges more rapidly as the forecast horizon
extends than the latter, which is evident from Equation (13). Therefore, when the
forecast horizon is sufficiently long, the increasing influence of the covariance becomes
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dominant, leading to an increasing dispersion.
Interestingly, when the threshold is negative (h ≤ 0), forecast dispersion always in-

creases over the forecast horizon. This scenario occurs when the variance of the trend
innovation is neither too small nor too large. As shown in Lemma 4, in such cases, the
impact of the covariance between trend and cyclical beliefs (i.e., C̃OV) is greatest. In
the appendix, we offer a full characterization of how h varies across parameters.

In the special case characterized in section 4.1, forecasters can distinguish between
the trend and cyclical components perfectly, rendering the covariance term always
equal to zero. As a result, the threshold value in the right-hand side of Equation (14)
goes towards infinity (h → ∞), implies that the forecast dispersion always decreases
over the forecast horizon.

5 Application, Extension and Discussion

In the preceding sections, we have presented a model of expectation formation in
which forecasters cannot perfectly separate cyclical component from the trend com-
ponent. We show that this model is useful to account for empirical regularities doc-
umented using SPF data. In this section, we will explore how this framework can be
utilized to analyze policy-relevant issues (section 5.1) and how it can be extended to
accommodate behavioral bias studied in the existing literature (section 5.2). We will
also discuss an alternative approach to modeling confusion and its implications (sec-
tion 5.3).

5.1 Inflation targeting and forecasts

In this section, we examine the effects of a significant policy change in the United
States in 2012 - the introduction of explicit inflation targeting. This new approach to
monetary policy implementation began with an announcement on January 25th by
Ben Bernanke, the Chairman of the U.S. Federal Reserve, who set a specific inflation
target of 2%. Prior to this policy change, the United States did not have an explicit
inflation target, relying instead on regularly announced desired target ranges for in-
flation. Through the lens of our model, the implication of this policy for forecasters
is that the underlying data generation process for inflation could undergo changes
which would necessitate changes in forecasting behaviors.

To assess the impact of explicit inflation targeting, we start by dividing the whole
sample into two sub-samples: the period before 2012 and the period after. Table 4
presents a statistical summary for these two sub-samples. Column (1) displays the
average inflation rate (i.e., CPI) in the two sub-samples, revealing that the average
inflation rate drops from 3.2 to 1.5 following the policy implementation. Columns (2)
and (4) present the mean forecasts for each subsample, showing that after 2012, the
means of both the now-cast and the ten-year ahead forecasts decline, coming closer
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Table 4. Summary Statistics

Summary Statistics

Data Now-cast Ten-year forecast

Mean Mean Variance Mean Variance

Sub-sample (1) (2) (3) (4) (5)

Pre-2012 3.215 2.956 0.993 2.75 0.262
Post-2012 1.578 1.755 0.737 2.26 0.136

Note: This table provides a summary of statistics for the now-cast, the ten-year ahead
forecast, and the corresponding real data. Column (1) presents the mean of the actual
inflation rate in the two sub-samples. Columns (2) and (3) report the mean and
average forecast variance across quarters for the pre-2012 subsample. Columns (4)
and (5) report the mean and average forecast variance for the post-2012 subsample.

to 2%. Additionally, we compute the variance of both the now-cast and the ten-year
ahead forecasts for each quarter and report the average variances for each period in
columns (3) and (5), showing that both variances decrease in the post-2012 period.

To quantify the underlying changes caused by the policy implementation, we struc-
turally estimate this model using moments obtained from both the pre- and post-2012
samples. We then assess the estimated changes in the data generation process and
examine how they quantitatively impact the empirical patterns of forecasts. While all
the details of the estimation are relegated to Appendix A.5, we provide a summary of
the estimation procedures below.

Specifically, our model can be fully specified by two sets of parameters. First, there
are three parameters related to the data generating process, that is {ρ, σ2

µ, σ2
x}. Second,

there are two parameters that capture the precision of the signals, that is {σ2
ε , σ2

e }. To
structurally estimate the value of these parameters Θ = {ρ, σ2

µ, σ2
x , σ2

ε , σ2
e }, we follow

Chen et al. (2024) in computing Laplace-type estimators (LTE) with an Markov Chain
Monte Carlo approach.

As our goal is to identify the changes in the underlying parameters, we estimate
this set of parameters for each subsample period. We compute the variances of fore-
casts for different horizons, specifically for h = 0, 1, 2, 3, 4, using the subsamples before
and after 2012. These variances will be treated as the target moments in our estimation
and denoted as m̂. Furthermore, we construct the model counterpart of m̂ and define
the distance between the two as follows:

Λ(Θ) = [m(Θ)− m̂]′Ŵ[m(Θ)− m̂], (15)

where Ŵ is the weighting matrix, where the diagonal elements represent the precision
of the moments m̂. We solve for the parameter values (Θ) to minimize the constructed
distance, that is, finding the set of parameter values that best matches the forecast
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Table 5. Estimated Model Parameters

Parameter Estimation

Pre-2012 Post-2012

Mean 90%HPDI 95% HPDI Mean 90%HPDI 95% HPDI

σ2
µ 1.19 (0.83,1.68) (0.75,1.69) 1.18 (0.81,1.67) (0.74,1.68)

σ2
x 1.64 (1.32,1.85) (1.37,2.02) 1.64 (1.32,1.84) (1.37,2.01)

σ2
ε 1.27 (0.94,1.49) (0.89,1.57) 1.26 (0.93,1.49) (0.88,1.56)

σ2
e 1.15 (0.85,1.42) (0.84,1.45) 1.15 (0.85,1.42) (0.84,1.45)

ρ 0.92 (0.85,0.99) (0.85,0.99) 0.64 (0.54,0.76) (0.54,0.79)
Note: This table presents the estimated parameter values for the pre-2012 and post-2012
periods. We provide the mean values, as well as the 90% and 95% Highest Posterior
Density Intervals (HPDI).

variance at each forecast horizon.
The estimated parameters for each subsample are reported in Table 5 together with

the 90% and 95% high posterior density interval (HPDI). A comparison of the two sets
of estimated parameters reveals that there are minimal changes in the innovations in
trends and cycles (i.e., σ2

µ and σ2
x) and the precision of signals on trends and cycles

(i.e., σ2
ε and σ2

e ) following the policy change in 2012. This indicates that this set of
parameters remain relatively stable before and after the policy change.

The only noteworthy change is the significant, sizable decrease in the persistence
of the cyclical component. Before the policy change, the estimated persistence of the
cyclical component was 0.92, aligning with previous literature. For instance, Carvalho
et al. (2023) estimated a value of ρ = 0.87, while Bianchi et al. (2021) estimated a
persistence of ρ = 0.70. After the policy change, the estimated persistence dropped to
0.64, indicating that short-term fluctuations have become less persistent. The observed
change in the estimated persistence of the cyclical component is intuitive. Following
the policy change, the central bank would respond more aggressively to short-term
deviations from the long-term target. Consequently, the persistence of the cyclical
component would decrease.

Next, we will examine whether this estimated model can replicate the set of facts
documented in section 2 regarding inflation forecasts before and after 2012. Towards
this end, we first reproduce the empirical patterns of inflation expectations by re-
estimating Equations (1) and (2) using the two sub-samples.

The results are presented in Table 6. In Panel A, we present the results of esti-
mating Equation (1) in columns (1) and (2) for the period before and after 2012, re-
spectively. In the pre-2012 sub-sample, we observe a significant negative correlation
between changes in trend beliefs and changes in cyclical beliefs. In the post-2012 sub-
sample, we find this correlation becomes positive and insignificant. In Panel B, we
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Table 6. Estimation result: effect of inflation targeting

Data Estimated

Pre-2012 Post-2012 Pre-2012 Post-2012

(1) (2) (3) (4)

Panel A. Dependent Variable: Trend belief changes.
Cyclical belief changes -0.019*** 0.009 -0.033** 0.008

(0.006) (0.009) (0.014) (0.021)

Obs 2,047 1,236 2178 1271
R-sq. 0.012 0.004 0.002 0.001

Panel B. Dependent Variable: Forecast Dispersion.
Forecast horizon h -0.058*** -0.094*** -0.043*** -0.070***

(0.022) (0.017) (0.005) (0.007)

Obs. 610 160 610 160
R-sq. 0.512 0.315 0.194 0.492
Note: This table presents the coefficients obtained Equation 1 and Equation 2. The estimation results are reported
in columns (1) and (2) using the SPF data before and after 2012, respectively. Columns (3) and (4) report the
estimation result using the simulated data with estimated parameters before and after 2012.

display the estimation results of Equation (2) in columns (1) and (2) for the pre-2012
and post-2012 periods, respectively. Comparing the two periods, we observe that af-
ter the implementation of explicit inflation targeting, the forecast dispersion exhibits
a more pronounced decline over the forecast horizon, evidenced by an increase in the
magnitude of the slope from −0.058 to −0.094, both being statistically significant.

This set of changes observed after the implementation of inflation targeting is in
line with the predictions of our model. According to Lemma 4 (i.e., part (ii)), when the
cyclical component becomes less persistent (i.e., ρ decreases), the negative covariance
between forecasters’ beliefs about trends and cycles diminishes. In other words, as the
cyclical components become less persistent, distinguishing between trends and cycles
becomes less important. Consequently, the empirical patterns should more closely
align with those predicted by the standard model, where the confusion mechanism is
absent. Specifically, our model predicts that following the policy change, changes in
trend belief and changes in cyclical beliefs become more likely to be positively corre-
lated, and forecast dispersion would decrease at a faster rate over the forecast horizon.

While our model can generate predictions that qualitatively align with the empir-
ical evidence, we now aim to evaluate the extent to which this estimated model can
quantitatively explain the observed changes in the data following the policy change.
Specifically, we simulate the model with the two sets of estimated parameters and
re-estimate the Equation (1) and Equation (2) with simulated data for each sub-period.

Columns (3) and (4) of Table 6 present the regression results from simulation data,
using parameter values estimated for the periods before and after 2012, respectively.
In panel A, we show the estimation result of Equation (1) in column (3), which is
untargeted. The simulated data exhibits a significant negative correlation between
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changes in trend beliefs and cyclical beliefs (−0.033). In panel B, the estimation result
of Equation (2) using the simulated data is significantly negative (−0.043) and close to
the actual coefficient (−0.058) in terms of magnitude.

Column (4) of Table 6 displays the estimation results using simulation data for the
period after 2012. In Panel A, the estimated coefficient is not statistically significant
(0.008), which is in close proximity to the actual coefficient in the data (0.009). In
Panel B, the estimated coefficient after 2012 is significantly negative (−0.070), and its
magnitude is greater than that before 2012 (−0.094).

In summary, despite its simplicity and the limited number of parameters, our
model can effectively capture the shift in forecasting patterns following the policy
change and quantitatively resembles those changes observed in the actual data.

5.2 Rational Confusion and Behavioral Bias

In the previous sections, we show how the confusion mechanism plays a role by as-
suming that forecasters are rational and use the Bayesian rule to update their beliefs.
In this section, we demonstrate that our framework can be extended to incorporate
behavioral biases studied in the literature on expectation formation. We emphasize
that the new confusion mechanism we introduce can interact with these biases and
provide insights into various issues in the literature. Specifically, we showcase this
by introducing the feature of overconfidence, where forecasters subjectively believe
that the variances of the signal noise are smaller than their actual values (e.g., Daniel
et al. 1998, Kohlhas et al. 2019). We demonstrate how this extension of the bench-
mark model could explain why now-cast errors might persist across periods, which is
a well-known puzzle in the literature on expectation formation.

Following Ma et al. (2020), we examine the correlation between the now-cast errors
across periods, using the SPF data. To be specific, we estimate the following equation:

yt − Fi,tyt︸ ︷︷ ︸
FEi,t

= α + β(yt−1 − Fi,t−1yt−1︸ ︷︷ ︸
FEi,t−1

) + εi,t, (16)

Table (7) displays the estimation results. In column (1), we observe that the estimated
coefficient is significantly positive for the majority of macro variables. This suggests
that the forecast error exhibits persistence over time: a larger (lower) now-cast error
in the previous period is associated with a larger (lower) now-cast error in the current
period.

The set of estimation results has two important implications. Firstly, in our bench-
mark model without behavioral bias, the estimated coefficients should be zero. It is
straightforward that the now-cast error in the last period is already known to the fore-
casters when they provide their forecast in the current period. Therefore, the now-cast
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Table 7. Forecast error persistence

Dependent Variable: Now-cast error

β SE
ObsForecast Variable (1) (2)

Nominal GDP 0.154*** 0.048 5,872
Real GDP 0.194*** 0.057 5,907
GDP price index inflation 0.147** 0.064 5,803
Real consumption -0.109* 0.064 4,122
Industrial production 0.303*** 0.084 5,497
Real nonresidential investment 0.070 0.073 4,046
Real residential investment 0.120** 0.059 4,038
Real federal government consumption -0.066 0.081 3,880
Real state and local government consumption 0.040 0.062 3,800
Housing start 0.261*** 0.060 5,599
Unemployment 0.192*** 0.056 5,489
Inflation rate (CPI) 0.044 0.065 4,188
Note: This table shows the coefficients from Equation (16). The sample period is from 1968Q4 to
2019Q4. All the standard error is clustered by individual and year-quarter.

error across periods should be independent when the forecasters are fully rational. The
significant estimated coefficients arising from this estimation indicate that forecasters
deviate from the rational benchmark, highlighting the necessity of incorporating be-
havioral bias in our model.

Secondly, in a model where the confusion mechanism is absent and forecasters
are overconfident, the now-cast errors across periods should still be zero. This is be-
cause the now-cast error in each period consists only of a weighted average of the
state innovation and the signal noise. Overconfidence distorts the weights assigned
to each component. However, both the innovations and signal noises are indepen-
dent across periods; therefore, the correlation between now-cast errors across periods
remains zero.

In the following, we investigate how the interplay between the two mechanisms –
confusion and overconfidence – could account for this the documented empirical pat-
tern. Specifically, to incorporate overconfidence, we consider a scenario where fore-
casters perceive the signal variances of the trend and cyclical components as m1σ2

ε and
m2σ2

e respectively. When m1 < 1 (m2 < 1), it indicates that forecasters subjectively
believe the trend (cyclical) signal is more precise than it actually is.

Proposition 3. (i) When forecasters are overconfident in the trend signal (m1 < 1), the now-
cast errors across periods are positively correlated if and only if

ρσ2
e σ2

µ

σ2
ε [σ

2
x + (1− ρ)σ2

e ]
= m1 < m1 < 1, (17)

and negatively correlated otherwise. (ii) When forecasters are overconfident in the cyclical
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signal (m2 < 1), the now-cast errors across periods are positively correlated if and only if

1 <
1

m2
<

1
m2

=
σ2

e [ρσ2
µ − (1− ρ)σ2

ε ]

σ2
ε σ2

x
(18)

and negatively correlated otherwise.

To explicate the proposition, we observe that the now-cast error of period t consists
of three parts: the state innovations of period t, the noise of the new signals, and the
separation error inherited from the previous period (zi,t−1). Since the state innovations
and the noise in the private signals are independent across periods, the component of
the now-cast error generated by the current state innovation and signal noise must be
independent of the now-cast error from the previous period (FEi,t−1). In other words,
the correlation between the now-cast errors in the last period (FEi,t−1) and the current
period (FEi,t) must be driven by their correlations with the separation error from the
last period (zi,t−1).

We first analyze the correlation between the separation error from the last period
(zi,t−1) and the now-cast error in the last period (FEi,t−1). As shown in Lemma 5, the
separation error from the last period is a weighted combination of the error terms of
the beliefs regarding the trend and cyclical components. When forecasters are over-
confident in the trend signal (i.e., m1 < 1), the perceived variance of the trend com-
ponent is smaller than it actually is. Consequently, in the separation error zi,t−1, the
error term in the trend component is assigned an excessive weight compared to the
Bayesian scenario without overconfidence. That force drives the correlation between
the separating error (zi,t−1) and the now-cast error for the previous period (FEi,t−1) to
be negative. Specifically, we show the covariance is given by:

cov(zi,t−1, FEi,t−1) = −(1−m1)σ
2
ε σ2

e φT
O

V1

Ω1
< 0,

where φT
O is a positive scalar, and V1 and Ω1 are counterparts of V and Ω, respectively.

Detailed expressions for all of these variables are provided in Appendix 3.
For example, suppose there exists a positive strong trend signal in period t − 1.

Forecasters would overreact to it, resulting in an overestimation of the trend compo-
nent. Consequently, the now-cast FEi,t−1 is smaller compared to the Bayesian case
without overconfidence and by construction it implies a larger separation error zi,t−1.
That gives rise to a negative correlation between FEi,t−1 and zi,t−1.

Then, we turn to analyze how this separation error (zi,t−1) affects the now-cast er-
ror in the current period (FEi,t). The correlation of these two depends on how forecast-
ers revise their beliefs regarding the trend and cyclical components when signals are
observed. When forecasters are overconfident in the trend signal, the covariance be-
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Table 8. Overconfidence, Confusion and Forecast Error Persistence

Overconfident Cov(FEi,t−1, zi,t−1) Cov(zi,t−1, FEi,t) Cov(FEi,t−1, FEi,t)

Trend signal Negative Negative, iif. m1 < m1 Positive, iif. m1 < m1 < 1

Cyclical signal Positive Positive, iif. m2 < m2 Positive, iif. m2 < m2 < 1

Note: This table summarizes the implications of overconfidence and confusion mechanisms on the relationship
between the now-cast error in the previous period, the now-cast error in the current period, and the separation
error.

tween the separation error and the now-cast error for the current period can be written
as follows:

cov(zi,t−1, FEi,t) =
σ2

z
Ω1

[−m1σ2
ε (σ

2
x + σ2

e )︸ ︷︷ ︸
trend prior e f f ect

+ ρσ2
e (σ

2
µ + m1σ2

ε )]︸ ︷︷ ︸
cyclical prior e f f ect

, (19)

Recall that the separation error inherited from period t− 1 is present in the prior belief
for period t, which exert opposite effects on prior beliefs regarding trend and cyclical
components (see Equation (6)). Specifically, if the separation error zi,t−1 is positive,
compared to the case without a separation error, the trend prior leads to a larger now-
cast and a lower FEi,t; whereas the cyclical prior leads to a smaller now-cast and a
larger FEi,t. That is why the effect of the trend prior is negative and the effect of the
cyclical prior is positive in Equation (19).

When forecasters are overconfident about the trend signal, they tend to place greater
reliance on the trend signal to infer the trend component in period t and rely less on
the prior belief inherited from period t− 1. That is why the effect of the trend prior is
discounted with m1 < 1 in Equation (19).

As the extent of overconfidence in the trend signal increases, the effect of the trend
prior is more likely to be dominated by the effect of the cyclical prior. In other words,
when m1 becomes smaller, the covariance between the separation error (zi,t−1) and the
current now-cast error (FEi,t) is more likely to be positive. Consider a polar case where
m1 goes to zero, the correlation is strictly positive.

Part (i) of Proposition 3 states that when both the confusion and overconfidence
mechanisms are present, the now-cast errors can be positively correlated over time,
on condition that the extent of overconfidence in the trend signal is moderate. Table
8 summarizes the correlations between the now-cast error in the previous period, the
now-cast error in the current period, and the separation error.

The inequality in Equation (17) characterizes the condition under which the effect
of the trend prior dominates the effect of the cyclical prior. Consider the case where
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the cyclical is very volatile, that is, σ2
x is large enough and as a result m1 converges to

zero. Forecasters would place very limited reliance on the prior belief regarding the
cyclical component and rely heavily on new information about the cycle. Therefore,
the effect of the trend prior always dominates, which drives a negative correlation
between the separation error and the now-cast error of the current period. As a result,
the covariance between the now-cast errors across periods is positive for any m1 < 1.

The analysis of the case where forecasters are overconfident about the cyclical sig-
nal is analogous. We relegate the relevant discussion in Appendix C.

5.3 Misinterpretation of Signals

In our benchmark model, forecasters can be confused about the trend and cyclical
components because they are not directly observable. However, confusion can be
modeled alternatively: although forecasters can observe the components at the end
of each period, they may misinterpret the signals before making forecasts, mistaking
a trend signal for a cyclical one or vice versa. Interestingly, under certain conditions,
this model of misinterpretation predicts an increase in forecast dispersion as the fore-
cast horizon extends. But it consistently predicts a non-negative correlation between
changes in trend beliefs and cyclical beliefs, which contrasts with the negative corre-
lation documented in the data.

The misinterpretation model differs from our benchmark model in two ways. First,
we assume that forecasters can observe not only the state value (i.e., yt−1) at the end of
each period but also the trend and cyclical components perfectly (i.e., µt−1 and xt−1).
Consequently, there is no confusion about these components at the end of each period.
In the following period t, they still observe signals about trends and cycles. Second,
we introduce the possibility of forecasters misinterpreting the signals before they make
forecasts. Specifically, there is a probability τ that a forecaster may interpret the trend
signal as a cyclical one and, at the same time, treat the cyclical signal as a trend signal.

In this model, each forecaster updates their beliefs and forms expectations using
the Bayesian rule, even though there is a possibility of misinterpreting signals. That is,

θi
1,t = θ2,t−1 + κ× (si,t − θ2,t−1), (20)

where θ2,t−1 is (µt−1, xt−1)
′ for all forecasters, as the actual value of the components

from the previous period is perfectly observed and the Kalman gain matrix κ is stan-
dard:

κ =

 σ2
µ

σ2
ε+σ2

µ
0

0 σ2
x

σ2
e +σ2

x

 .

For those who correctly interpret the signals, si,t is represented as (sµ
i,t, sx

i,t)
′. And the
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variance-covariance matrix of their beliefs is given by:

(
VarT

c C̃OVc

C̃OVc VarC
c

)
=

 σ2
ε σ2

µ

σ2
ε+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e

 .

For those who wrongly interpret the signals, si,t is represented as (sx
i,t, sµ

i,t)
′, the corre-

sponding variance-covariance matrix of their beliefs is:

(
VarT

w C̃OVw

C̃OVw VarC
w

)
=

 σ2
µ(σ

4
ε+σ2

µσ2
e )

(σ2
ε+σ2

µ)2 0

0 σ2
x (σ

4
e +σ2

x σ2
ε )

(σ2
x+σ2

e )2

 .

Next, we examine whether the misinterpretation model could account for the two
documented empirical facts. Proposition 4 summarizes our the result regarding the
dispersion of forecasts over horizon.

Proposition 4. If the individual forecaster may misinterpret the signals with a probability τ,
the dispersion of forecasts across forecasters is increasing in the forecast horizon h, if and only
if:

h > hm =
1

ln ρ
ln [τ(1− τ)]

−C̃OVm

2[τφC
wVarC

w + (1− τ)φC
c VarC

c ]
, (21)

where 0 < φC
w < 1 , 0 < φC

c < 1, C̃OVm = − (σ2
µ+σ2

x )σ
2
x σ2

µ

(σ2
ε+σ2

µ)(σ
2
e +σ2

x )
and ln ρ < 0.

Proposition 4 states that, similar to the benchmark model, the forecast variance
increases as the forecast horizon extends when h is larger than a threshold hm. Inter-
estingly, when everyone correctly interprets the signals (i.e., τ = 0), or everyone mis-
interprets the signals (i.e., τ = 1), the threshold hm approaches infinity. This implies
that the forecast variance decreases monotonically over the horizon. Furthermore, the
threshold hm could be negative if the value of τ falls within the intermediate range.
This implies that the forecast variance increases monotonically over the horizon.

To understand this result, we examine the forecast variance, which can be decom-
posed as the variance of the cyclical belief across forecasters, the variance of the trend
belief across forecasters, and their covariance across forecasters:

Var(Fi,tyt+h) = ρ2h[τφC
wVarC

w + (1− τ)φC
c VarC

c ] + [τφT
wVarT

w + (1− τ)φT
c VarT

c ]

+ ρh(1− τ)τC̃OVm. (22)

Since forecasters can observe the two components at the end of each period, the vari-
ance of the cyclical belief and the trend belief (i.e., the first two terms) is caused by the
information heterogeneity prior to making forecasts.
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The covariance across forecasters (i.e., the third term) arises because forecasters
can be divided into two groups in this model: those who misinterpret the signals and
those who correctly use them. To illustrate, consider there is a positive strong trend
signal. This signal would increase the trend beliefs of those who correctly interpret it
and the cyclical beliefs of those who misinterpret it as a cyclical signal. As a result,
due to the presence of individuals who misinterpret the signal, the trend belief of the
entire population, on average, is lower than it should be, while the cyclical belief is
higher than it should be. This creates a negative covariance between beliefs about the
trend and cyclical components, even though the beliefs of individuals regarding these
components are independent.

As the forecast horizon extends, similar to the benchmark model, the variance of
the cyclical component decreases, and the covariance term increases. If the increase in
the covariance term is more pronounced, the forecast variance would increase as the
forecast horizon extends.

While this misinterpretation model could generate an increasing forecast disper-
sion over the horizon under some conditions, can it also generate the negative corre-
lation between changes in trend beliefs and changes in cyclical beliefs? It is important
to note that the Kalman gain matrix in Equation (20) indicates that individuals’ be-
lief updating for the trend and cyclical components is independent. As a result, one’s
subjective beliefs regarding these components are also independent. Thus, we have
cov(E[µi,t]− E[µi,t−1], E[xi,t]− E[xi,t−1]) = 0. Therefore, the covariance of the changes
in trend beliefs and cyclical beliefs becomes:

cov(Fi,tyt+3Y− Fi,t−1yt−1+3Y, Cyci,t−Cyci,t−1) = (1− ρ3Y)ρ3Yvar(E[xi,t]−E[xi,t−1]) ≥ 0.

In other word, the misinterpretation model predicts a non-negative correlation be-
tween the changes in trend beliefs and cyclical beliefs, which is inconsistent with the
fact documented in section 2.3.

6 Conclusion

Our paper introduces a framework in which forecasters cannot perfectly separate the
trend and cyclical components in the state variable. Qualitatively, we demonstrate
that this crucial feature of our model can help to account for a set of observed em-
pirical patterns. Quantitatively, we apply this model to study the impact of explicit
inflation targeting policy in 2012 on forecasting behaviors. This framework can be ex-
tended to incorporate behavioral biases and address additional empirical puzzles in
the literature on expectation formation. We also explore an alternative setting in which
forecasters confuse trend and cycle signals, which turns out to be inconsistent with the
observed empirical patterns.
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In continuation of the current work presented in this paper, there are two promis-
ing avenues for further research. First, our model is flexible enough to incorporate
various behavioral biases studied in the literature, and investigating their interaction
with the confusion mechanism will provide valuable insights into the expectation for-
mation process. Second, this framework has potential applications beyond forecasting
models. For instance, it could be applied to understand the behavior of investors who
cannot separate trend and cyclical components in the earnings of firms. As a result,
their diverse beliefs may influence their choices in the financial market. We defer the
exploration of these research questions to future developments of this framework.
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Appendix

A Data and Robustness Tests

A.1 Variable Definition

The data used in this paper are from the Survey of Professional Forecasters (SPF). Fol-
lowing Bordalo et al. (2020), we convert macroeconomic variables to annual growth
rates. For variables that are already presented as rates, we use the original data di-
rectly. The procedures are a replication of Bordalo et al. (2020).

Variables changed to the annual growth rate: nominal GDP (NGDP), real GDP
(RGDP), GDP price index inflation (PGDP), real consumption (RCONSUM), Industrial
production (INDPROD), real nonresidential investment (RNRESIN), real residential
investment (RRESINV), real federal government consumption (RGF), real state and
local government consumption (RGSL).

• Questions: The level of Variable name in the current quarter and the next 4
quarters.

• Forecast of h period ahead: ( Fi,tyt+h
yt+h−4

− 1)× 100, where Fi,tyt+h is the original sur-
vey forecast from the forecaster i provided in period t regarding the state vari-
able y in h period ahead. yt+h−4 is the real state value of period t + h− 4 already
released.

Variables directly use the survey data: Unemployment (UNEMP), housing start
(HOUSING), CPI, Three-month Treasury rate (Tbills), Ten-year Treasury rate (Tbonds).

• Questions: The level of Variable name in the current quarter and the next 4
quarters.

• Forecast of h period ahead: Fi,tyt+h, where Fi,tyt+h is the original survey fore-
cast from the forecaster i provided in period t regarding the state variable y in h
period ahead.
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A.2 Robustness: Forecast dispersion over forecast horizon with time fixed effect

Table A1. Forecast dispersion over forecast horizon with time FE

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Time FE Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.014 0.204*** 0.005 Yes 1,025
Real GDP 0.242*** 0.013 0.162*** 0.004 Yes 1,025
GDP price index inflation 0.118*** 0.005 0.119*** 0.003 Yes 1,025
Real consumption 0.125*** 0.008 0.127*** 0.004 Yes 770
Industrial production 0.860*** 0.034 0.320*** 0.009 Yes 1,025
Real nonresidential investment 1.647*** 0.068 0.497*** 0.012 Yes 770
Real residential investment 6.021*** 0.299 0.932*** 0.026 Yes 770
Real federal government consumption 1.284*** 0.065 0.393*** 0.013 Yes 770
Real state and local government consumption 0.317*** 0.016 0.210*** 0.006 Yes 770
Housing start 0.004*** 0.000 0.020*** 0.001 Yes 1,024
Unemployment 0.034*** 0.001 0.082*** 0.002 Yes 1,014
Inflation rate (CPI) -0.066*** 0.013 -0.073*** 0.008 Yes 770
Three-month Treasury rate 0.053*** 0.002 0.106*** (0.003 Yes 560
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.002 Yes 560
Note: This table shows the coefficients from estimating Equation 2 with year-quarter fixed effect. The sample period is from
1968Q4 to 2019Q4. In column (1), we directly use the forecast variance. In column (3), we use the difference between the 25%
percentile and 50% percentile.
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A.3 Three years ahead forecast and trend estimates using HP filter

(a) Real GDP growth (b) Unemployment rate

Figure A1. Bin-scatter plot for the three years ahead predictions and trend estimates using HP filter.
Note: The sample period for the analysis spans from 2009 to 2019. The two figures presented compare the
three-year-ahead forecasts for the real GDP growth rate and the unemployment rate with the estimated
trends obtained using the HP filter. Following Hodrick and Prescott (1997), the smooth parameter is set
to be λ = 1600 for the HP filter.
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A.4 Robustness: T-bills and T-bonds

To examine the idea presented in the main text, we estimate the following specifica-
tion:

Var(Fi,tyt+h) = α + β4h + β5T-bond + εt, (A1)

where T-bond is a dummy, which takes the value of 1 for forecast dispersion corre-
sponding to ten years treasury bonds forecast and takes the value of 0 for forecasts
on Treasury bills. Therefore, β5 reflect the difference in forecast dispersion between
the security with a longer maturity (T-bonds) and the security with a shorter maturity
(T-bills).

The results of our estimation are presented in Table A2. Columns (1) and (2) present
significantly positive coefficients for both the forecast horizon and the T-bond dummy.
This indicates that forecast dispersion increases as the forecast horizon extends for
both variables, aligning with our earlier findings. Furthermore, the dispersion of fore-
casts for ten-year T-bonds is significantly larger compared to T-bills (its three-month
counterpart). This observation suggests that forecasters demonstrate greater disagree-
ment in their forecasts for the long-term U.S. economy.

Table A2. Forecast dispersion of three-month and ten-year treasury bills

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

(1) (2)

Forecast horizon h 0.049*** 0.100***
(0.002) (0.003)

Ten-year Tbond 0.010* 0.062***
(0.006) (0.012)

Year FEs YES YES
Quarter FEs YES YES
Obs 1120 1120
Adj R-sq. 0.643 0.683
Note: This table shows the coefficients from Equation (A1). The sample period is from
1968Q4 to 2019Q4. Column (1) reports the result using forecast variance as the measure
of dispersion. Column (2) shows the result using the difference between the 25% per-
centile and 50% percentile. In both columns, significant positive coefficients on the forecast
horizon and the ten-year dummy implies that forecast dispersion increases as the forecast
horizon extends for both variables, and the dispersion of ten-year treasury bills is higher
compared to its three-month counterpart.
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A.5 Estimation procedures

To estimate the set of parameters Θ = {ρ, σ2
µ, σ2

x , σ2
e , σ2

ε} before and after 2012, we begin
by dividing the entire dataset into two subsets: one before 2012 and one after 2012. For
each subset, we compute the average forecast variance for different forecast horizons
(h = 0, 1, 2, 3, 4). These sets of forecast variances serve as the targets for estimation
denoted as m̂.

Next, we compute the precision of each estimation target. Specifically, for a given
forecast horizon h, we calculate the standard error of the forecast variance across dif-
ferent quarters. We use the precisions of moments m̂ as the weighting matrix, denoted
as Ŵ. Table A3 provides the summary statistic of the estimation moments.

Table A3. Estimation Moments

Estimation Moments

Pre-2012 Post-2012

Target SE Target SE

h=0 0.805 1.276 0.719 0.693
h=1 0.543 0.568 0.321 0.182
h=2 0.444 0.370 0.274 0.123
h=3 0.410 0.324 0.256 0.103
h=4 0.413 0.282 0.269 0.071

The distance is defined in Equation (15) as the weighted squared difference be-
tween the target moments m̂ and the model prediction m(Θ), which represents the
moments implied by the model for the given parameter set (Θ). Using MCMC with
the Metropolis-Hastings algorithm, we choose the set of model parameters that min-
imize the distance Λ(Θ). The estimation of the parameter set before and after 2012
follows the exact same procedures, with different estimation targets derived from the
respective subsets of the data.
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B Proofs

Characterization of special case when the trend is observable in section 4.1.
Consider a special case where both the state and trend components are observable

at the end of each period. Without loss of generality, we assume the cyclical compo-
nent follows an AR(N) process:

xt =
N

∑
h=0

ρhLhxt + γx
t ,

where L is the lag operator.
The private signal of forecaster i is given by:

sµ
i,t = µt + εi,t and sx

i,t = xt + ei,t.

Given the trend component is observable at the end of each period, one’s prior
belief before observing the signals is:

θi
2,t−1 =

(
µt−1

∑N
h=0 ρhLhxt

)
.

The posterior beliefs regarding the two components upon observing the signals is
given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1),

where the Kalman gain matrix and the variance-covariance matrix is same as the ones
in the main text:

κ =

 σ2
µ

σ2
µ+σ2

ε
0

0 σ2
x

σ2
x+σ2

e

 , and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=

 σ2
ε σ2

µ

σ2
ε+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e

 .

The forecast variance across forecasters is given by:

Var(Fi,tyy+h) = ρ2h(
σ2

x
σ2

x + σ2
e
)2σ2

e + (
σ2

µ

σ2
µ + σ2

ε
)2σ2

ε .

It is evidence that the forecast variance across forecasters is decreasing, as the forecast
horizon extends.

In addition, changes in trend beliefs and changes cyclical beliefs can be written as
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follows:

Fi,tyt+3Y− Fi,t−1yt−1+3Y = (µi
1,t−Ei,t−1[µt−1])+ ρ3Y(Ei,t[

N

∑
h=0

ρhLhxt+3Y]−Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]),

and

Cyci,t − Cyci,t−1 = (1− ρ3Y)(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]).

Following the same logic as the main text, the correlation between changes in the be-
liefs about the trend component and changes in beliefs about the cyclical component
at any horizon should be non-negative. That is,

cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cyci,t − Cyci,t−1)

= ρ3Y(1− ρ3Y)Var(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]) ≥ 0.

In this special case, where trends and cycles are observable at the end of each period,
the model fails to replicate either of the two empirical patterns documented, even
when we allow the data generation process for the cyclical component to follow an
AR(N) process.

Proof of Lemma 1 and Lemma 2. We first show that if zi,t−1 follows a normal dis-
tribution with a mean of zero and a variance denoted by σ2

z,t−1, then zi,t will also be
normally distributed. Furthermore, we show that the variance of zi,t converges to a
unique steady state value of σ2

z .
To begin, we note that with the prior belief and the signal structures given by Equa-

tion (5) and (6), the posterior belief of forecaster i after receiving signals is given by:

p(θ|si,t) ∝ p(θi
2,t−1)p(si,t|θi

2,t−1)

∝ exp
{
−1

2
[θT(Σ−1

s + Σ−1
θi

2,t−1
)θ− 2(Σ−1

s + Σ−1
θi

2,t−1
)−1(Σ−1

s + Σ−1
θi

2,t−1
)(sT

i,tΣ
−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)θ]

}
∝ exp[−1

2
(θ− θi

1,t)
T(Σ−1

s + Σ−1
θi

2,t−1
)(θ− θi

1,t)],

where
θi

1,t = (Σ−1
s + Σ−1

θi
2,t−1

)−1(sT
i,tΣ
−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)T.

To be specific, θi
1,t = (µi

1,t, xi
1,t)
′ is given by:

µi
1,t =

σ2
ε (ρ

2σ2
z + σ2

x + σ2
e )

Ω︸ ︷︷ ︸
prior weight

µi
2,t−1 +

V + σ2
e (σ

2
z + σ2

µ)

Ω︸ ︷︷ ︸
signal weight

sµ
i,t −

ρσ2
ε σ2

z
Ω

(sx
i,t − ρxi

2,t−1)︸ ︷︷ ︸
surprise f rom cycle

, (A2)
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xi
1,t =

σ2
e (σ

2
z + σ2

µ + σ2
ε )

Ω︸ ︷︷ ︸
prior weight

ρxi
2,t−1 +

V + σ2
ε (σ

2
x + ρ2σ2

z )

Ω︸ ︷︷ ︸
signal weight

sx
i,t −

ρσ2
e σ2

z
Ω

(sµ
i,t − µi

2,t−1)︸ ︷︷ ︸
surprise f rom trend

.

(A3)
where Ω and V are constants:

Ω = (σ2
z + σ2

µ + σ2
ε )(σ

2
x + σ2

e + ρ2σ2
z )− ρ2σ4

z , V = (σ2
z + σ2

µ)(σ
2
x + ρ2σ2

z )− ρ2σ4
z .

Equations (A2) and (A3) can also be rewritten in the form of a Kalman filter, as shown
in the main text:

θi
1,t = θi

2,t−1 + κ(si,t − θi
2,t−1),

where κ is the Kalman gain:

κ =

 V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ε σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ε (σ

2
x+ρ2σ2

z )
Ω

 .

Before the value yt revealed, forecaster i’s beliefs about µt and xt are given by a joint
distribution:

f (µ, x) ∼ N(θi
1,t, (Σ

−1
s + Σ−1

θi
2,t−1

)−1),

The observation of yt imposes a constraint to the belief updating process. That is,
the posterior beliefs regarding the trend and cyclical components after observing the
actual state must sum up to yt, i.e.,

µi
2,t + xi

2,t = yt.

With this constraint, the joint distribution can be written as:

f (µt, yt − µt) ∝ exp

{
− 1

2(1− r2)
[
(µ− µi

1,t)
2

VarT −
2r(µ− µi

1,t)(yt − µ− xi
1,t)√

VarTVarC
+

(yt − µ− xi
1,t)

2

VarC ]

}

∝ exp{− 1
2(1− r2)

[
(VarT + 2r

√
VarTVarC + VarC)µ2

VarTVarC

− 2µ
VarCµi

1,t + r
√

VarTVarC(µi
1,t + ytxi

1,t) + VarT(yt − xi
1,t)

VarTVarC ]}.

where VarT, VarC and r are given by:

VarT =
σ2

ε [Ω− σ2
ε (σ

2
x + σ2

e + ρ2σ2
z,t−1)]

Ω
and VarC =

σ2
e [Ω− σ2

e (σ
2
ε + σ2

µ + σ2
z )]

Ω
;
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and

r =
cov(µ, x)√

Var(µ)Var(x)
= −

ρσ2
e σ2

ε σ2
z,t−1√

VarTVarCΩ
.

Therefore, the updated belief of trend component follows f (µ) ∼ N(µi
2,t, σ2

zt
),where

µi
2,t =

VarCµi
1,t + VarT(yt − xi

1,t) + r
√

VarTVarC(µi
1,t + yt − xi

1,t)

VarT + 2r
√

VarTVarC + VarC
, (A4)

and

σ2
zt
=

(1− r2)VarTVarC

VarT + 2r
√

VarTVarC + VarC
. (A5)

The steady state value σ2
z is a fixed point of the condition characterized by Equation

(A5). Solving for the fixed point of Equation (A5) gives:

σ2
z =
−σ2

µ[Λ + 2ρ(1− ρ)σ2
e σ2

ε ] +
√

σ2
µΛ[σ2

µ(Λ + 4ρσ2
e σ2

ε ) + 4σ2
e σ2

ε σ2
x ]

2[Λ + ρ2σ2
µ(σ

2
e + σ2

ε )]
, (A6)

where Λ = (1− ρ)2σ2
e σ2

ε + σ2
x(σ

2
e + σ2

ε ).
In the next step, we demonstrate that regardless of the initial variance of the sepa-

ration error, denoted as σ2
z0

, it always converges to a unique steady state value σ2
z . We

first simplify Equation (A5) to:

σ2
z,t =

g1(σ
2
z,t−1)

g2(σ2
z,t−1)

, (A7)

where
g1(σ

2
z,t−1) = w1σ2

z,t−1 + η1 and g2(σ
2
z,t−1) = w2σ2

z,t−1 + η2,

w1 = σ2
e σ2

ε (ρ
2σ2

µ + σ2
x); η1 = σ2

e σ2
ε σ2

µσ2
x ;

w2 = ρ2(σ2
e σ2

ε +σ2
e σ2

µ +σ2
µσ2

ε )+σ2
e σ2

ε +σ2
e σ2

x +σ2
ε σ2

x − 2ρσ2
e σ2

ε ; η2 = σ2
e σ2

ε (σ
2
µ +σ2

x)+σ2
µσ2

x(σ
2
e +σ2

ε ).

Define the difference between σ2
z,t+1 and σ2

z,t as:

D(σ2
z,t) = σ2

z,t+1 − σ2
z,t =

g1(σ
2
z,t)

g2(σ2
z,t)
− σ2

z,t.

To show the steady state is unique, it is sufficient to show that D(σ2
z,t) is monotonically

decreasing. We first show that evaluated at σ2
z,t = 0, the derivative is negative.

∂D(σ2
z,t)

∂σ2
z,t
|σ2

z,t=0 =

[
σ2

e σ2
ε (ρσ2

µ + σ2
x)

σ2
e σ2

ε (ρσ2
µ + σ2

x) + σ2
µσ2

x(σ
2
e + σ2

ε )

]2

− 1 < 0.
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Then we show that the first-order derivative of D(σ2
z,t) is negative. The derivative is

given by:

∂D(σ2
z,t)

∂σ2
z,t

=
w1η2 − w2η1

(w2σ2
z,t + η2)2

− 1 =

[
σ2

e σ2
ε (ρσ2

µ + σ2
x)

(w2σ2
z,t + η2)

]2

− 1. (A8)

It is always decreasing, because we show that the second-order derivative is negative:

∂2D(σ2
z,t)

∂(σ2
z,t)

2
= −2w2

[σ2
e σ2

ε (ρσ2
µ + σ2

x)]
2

(w2σ2
z,t + η2)3

< 0.

Since D(σ2
z,t) is monotonously decreasing and concave and the steady state exists, it is

unique.

Proof of Lemma 3. Given the quadratic utility function, the forecaster’s optimal fore-
casts are given by the following:

Fi,tyt+h = Ei,t[yt+h]

= Ei,t[µt + ρhxt]

= µi
1,t + ρhxi

1,t.

The first equality is derived from the first order condition of the standard quadratic
utility function. With a quadratic utility function, forecasters would minimize the
expected squared error, and the first-order condition is given by:

Ei,t[Fi,tyt+h − yt+h] = 0.

The second equality follows given the data generation process is known to forecasters.
The third equality states that the expected value of the sum of µt and ρhxt is the sum
of the expected values of the two components, a well known property using Fourier
transform (Folland 2009).

Proof of Lemma 4 and Lemma 5. We provide proof for Lemma 4 and 5 jointly. From
Equation (A4) in the proof of Lemma 1, we obtain:

zi,t−1 = µi
2,t−1 − µt−1

=
(VarT + C̃OV)(xt−1 − xi

1,t−1)− (VarC + C̃OV)(µt−1 − µi
1,t−1)

VarT + C̃OV + VarC + C̃OV
,

which is the first part of Lemma 5.
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For the second part of Lemma 5, we first show the steady state value of σ2
z increases

in σ2
µ. The proof is constructed using the convergence property of the model. Specifi-

cally, using Equation (A7), we can show that σ2
z,t increases in σ2

µ:

∂σ2
z,t

∂σ2
µ

=
∂[g1(σ

2
z,t−1)/g2(σ

2
z,t−1)]

∂σ2
µ

=
σ4

e σ4
ε [σ

2
x − ρ(1− ρ)σ2

z,t−1]
2

g2(σ2
z,t−1)

2
> 0.

Therefore, when the σ2
µ increases, the variance of the separation error of the current

period σ2
z,t increases and monotonically converges to the new steady state, which is

unique. That is because D(σ2
z,t) is decreasing and crossing zero from above and only

once. As a result, the steady state value of the variance σ2
z always increases with an

increase in σ2
µ.

Furthermore, we can show that σ2
z is upper bounded. To see this, we note that

g2(σ
2
z,t−1)

2 increases with σ2
µ and the partial derivative ∂σ2

z /∂σ2
µ decreases as σ2

µ in-
creases. As σ2

µ approaches infinity, ∂σ2
z /∂σ2

µ approaches zero. That is,

Z′µ ≡
∂σ2

z
∂σ2

µ
> 0 and Z′′µ ≡

∂24σ2
z

(∂σ2
µ)

2 < 0.

The comparative statics with respect to σ2
x , σ2

ε , and σ2
e are analogous.

It is worth noting that zi,t is obtained via Bayesian updating, using the prior belief
µi

1,t and yt − xi
1,t shown in Equation (A6). As the variance of the posterior belief is

always smaller than the variance of both prior beliefs, we can obtain:

0 ≤ σ2
z ≤ min{VarC, VarT}.

Similarly, considering the case that when the persistence of the cyclical component ρ

changes:

∂σ2
z,t

∂ρ
=

σ2
z,t−1

g2(σ2
z,t−1)

2

{
2σ4

e σ4
ε [ρσ2

µ + σ2
x ][σ

2
µ + (1− ρ)σ2

z,t−1]
}
> 0.

Therefore, the steady state value of σ2
z is increasing in ρ. The logic underlying this

statement is analogous.
We proceed to show that |C̃OV| first increases and then decreases in σ2

µ. The first-
order derivative is given by:

∂|C̃OV|
∂σ2

µ
∝ Z′µ(σ

2
e + σ2

x)(σ
2
ε + σ2

µ)− σ2
z (ρ

2σ2
z + σ2

e + σ2
x).
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We show that evaluated at σ2
µ = 0,

∂|C̃OV|
∂σ2

µ
|σ2

µ=0 ∝ Z′µ(σ
2
e + σ2

x)σ
2
ε > 0.

That is because σ2
z = 0 when σ2

µ = 0. The second-order derivative is given by:

∂2|C̃OV|
(∂σ2

µ)
2 ∝ Z′′µ(σ

2
µ + σ2

ε )(σ
2
e + σ2

x)− 2ρ2σ2
z Z′µ < 0.

To see the inequality we note that Z′µ > 0, and Z′′µ < 0. Therefore, there exists a unique

σ̃2
µ > 0, such that ∂|C̃OV|/∂σ2

µ = 0. For any σ2
µ < σ̃2

µ, |C̃OV| is increasing in σ2
µ; and for

any σ2
µ > σ̃2

µ, |C̃OV| is decreasing in σ2
µ. The property that |C̃OV| increases and then

decrease is implied.
Finally, it is straightforward that |C̃OV| is always increasing in ρ, because

∂|C̃OV|
∂ρ

=
σ2

e σ2
ε

Ω2

{
(σ2

x + σ2
e )[σ

4
z + ρZ′ρ(σ

2
µ + σ2

ε )] + σ2
z (σ

2
µ + σ2

ε )[σ
2
x + σ2

e − ρ2σ2
z ]
}
> 0,

where Z′ρ ≡ ∂σ2
z /∂ρ > 0.

Proof of Proposition 1. The covariance between the changes in the constructed trend
beliefs and the cyclical belief is given by:

cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cyci,t − Cyci,t−1)

= (1− ρ3Y)
[
cov(µi

1,t − µi
1,t−1, xi

1,t − xi
1,t−1) + ρ3Yvar(xi

1,t − xi
1,t−1)

]
= (1− ρh)(C̃OV + ρhVarC)

=
(1− ρh)σ2

e
Ω

{
ρh[Ω− σ2

e (σ
2
ε + σ2

µ + σ2
z )]− ρσ2

ε σ2
z

}
∝ ρh[Ω− σ2

e (σ
2
ε + σ2

µ + σ2
z )]− ρσ2

ε σ2
z .

Define K ≡ ρh[Ω− σ2
e (σ

2
ε + σ2

µ + σ2
z )]− ρσ2

ε σ2
z . Then the sign of the correlation between

changes in trend beliefs and changes in cyclical beliefs depends on the sign of K.
To prove the properties in the proposition, we first show that for any given σ2

µ, there
is a threshold σ2

x such that if and only if σ2
x < σ2

x, then K < 0; and otherwise, K ≥ 0. To

12



see this, we derive the first-order derivative of K with respect to σ2
x :

∂K
∂σ2

x
= ρh[σ2

z + σ2
µ + σ2

ε + σ2
x Z′x + ρ2Z′x(σ

2
µ + σ2

ε )]− ρσ2
ε Z′x (A9)

= Z′x

[
ρh(

σ2
z + σ2

µ + σ2
ε

Z′x
+ σ2

x + ρ2σ2
µ + ρ2σ2

ε )− ρσ2
ε

]
.

According to Lemma 5, Z′x > 0 and Z′′x < 0. Therefore, the sum of first two terms in
Equation (A9), (σ2

z + σ2
µ + σ2

ε )/Z′x + σ2
x , increases in σ2

x .
If ∂K/∂σ2

x ≥ 0 when evaluated at σ2
x = 0, then it always holds ∂K/∂σ2

x ≥ 0. If
∂K/∂σ2

x < 0 when evaluated at σ2
x = 0, ∂K/∂σ2

x crosses zero only once from below.
Note that ∂K/∂σ2

x must be positive when σ2
x is sufficiently large.

Furthermore, we characterize how K changes in σ2
x . When σ2

x = 0, K = 0. That
is because σ2

z = 0. When σ2
x > 0, K is either always positive, or K initially decreases

and then crosses zero from below. This property implies that for any given value of
σ2

µ, there exists a threshold σ2
x ≥ 0, such that K|σ2

x=σ2
x
= 0, and for any σ2

x < σ2
x, K < 0.

Given this property, we start proving the first item in this proposition. Towards
this end, we show the following claim.
Claim: When σ2

x = 0, there exists a threshold σ2
µ for σ2

µ, such that when σ2
µ ≥ σ2

µ, σ2
x = 0;

when 0 < σ2
µ < σ2

µ, σ2
x > 0; and when σ2

µ = 0, σ2
x = 0.

To prove this claim, we first evaluate ∂K/∂σ2
x at σ2

x = 0:

∂K
∂σ2

x
|σ2

x=0 = Z′x=0

[
ρh(

σ2
µ + σ2

ε

Z′x=0
+ ρ2σ2

µ + ρ2σ2
ε )− ρσ2

ε

]
,

where Z′x=0 is derivative of σ2
z evaluated at σ2

x = 0. It is given by:

Z′x=0 ≡
∂σ2

z
∂σ2

x
|σ2

x=0 =


2ρ(σ2

e +σ2
ε )

(1−ρ)(1+ρ)
σ2

µ +
2σ2

e σ2
ε

1+ρ , if σ2
µ > 0.

0, if σ2
µ = 0.

(A10)

There are only two cases. (i) When ∂K/∂σ2
x |σ2

x=0 ≥ 0, then K is always positive
when σ2

x > 0 and σ2
x = 0; and (ii) when ∂K/∂σ2

x |σ2
x=0 < 0, K is negative and then

crosses zero from below at σ2
x = σ2

x > 0. Therefore, the necessary and sufficient condi-
tion for σ2

x > 0 is given by ∂K/∂σ2
x |σ2

x=0 < 0, which is equivalent to

ρh(
σ2

µ + σ2
ε

Z′x=0
+ ρ2σ2

µ + ρ2σ2
ε )− ρσ2

ε < 0

13



or using the expression of Z′x=0 in Equation (A10),

2ρ4(σ2
e + σ2

ε )

1− ρ2 (σ2
µ)

2 +

[
1 +

2ρ2σ2
e σ2

ε

1 + ρ
(1 + ρ2 − ρ1−h)

]
σ2

µ −
[

ρ(ρ−h − 1)
2σ2

e σ2
ε

1 + ρ
+ ρ1−h

]
σ2

ε < 0.

(A11)

The left-hand-side of Equation (A11) is quadric in σ2
µ, therefore there are two roots.

Note that The left-hand-side of Equation (A11) is decreasing and then increasing in
σ2

µ and it is negative when σ2
µ = 0. Therefore, there must exist a unique positive root

σ2
µ > 0.

Therefore, when σ2
µ ≥ σ2

µ, σ2
x = 0, which implies K > 0 on condition that σ2

x > 0.
The first item in this proposition is shown. When 0 < σ2

µ < σ2
µ, σ2

x > 0, which implies
K > 0 on condition that σ2

x > σ2
x. The second item is shown.

Proof of Proposition 2. Given the optimal forecasts characterized by Lemma 3, the
forecast variance across all forecasters is given by:

Var(Fi,tyt+h) = E[(µi
1,t − E[µt])

2] + ρ2hE[(xi
1,t − E[xt])

2] + 2ρhE[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])].

E[·] stands for the average forecast across all forecasters. To be specific:

E[(µi
1,t − E[µt])

2] = VarT − σ4
ε (ρ

2σ2
z + σ2

x + σ2
e )

2

Ω2 − ρ2σ4
ε σ4

z
Ω2 − σ4

ε (σ
2
e + σ2

x)
2

Ω2 = VarTφT,

where φT is given by:

φT = 1− σ4
ε

VarT ×
σ2

µ(ρ
2σ2

z + σ2
x + σ2

e )
2 + ρ2σ2

x σ4
z + (σ2

e + σ2
x)

2Wσ2
z

Ω2

=
[V + σ2

e (σ
2
µ + σ2

z )]
2 + ρ2σ2

e σ2
ε σ4

z + σ2
ε (σ

2
e + σ2

x)
2Wσ2

z

Ω[Ω− σ2
ε (σ

2
x + σ2

e + ρ2σ2
z )]

< 1.

Note that W = E[(zi,t−1− E[zi,t−1])
2]/σ2

z is a positive scalar in steady state and invari-
ant in t. To obtain the numerator term E[(zi,t − E[zi,t])

2], we rewrite Equation (10) and
express zi,t as the follows:

zi,t =
σ2

e σ2
ε

Ω(VarT + 2C̃OV + VarC)
{−[σ2

x + ρ(ρ− 1)σ2
z ]γ

µ
t + [σ2

µ + (1− ρ)σ2
z ]γ

x
t (A12)

+ σ2
e Vεi,t − σ2

ε Vei,t + (ρσ2
µ + σ2

x)zi,t−1}.
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This allows us to obtain:

zi,t−E[zi,t] =
σ2

e σ2
ε

Ω(VarT + 2C̃OV + VarC)

[
σ2

e Vεi,t − σ2
ε Vei,t + (ρσ2

µ + σ2
x)(zi,t−1 − E[zi,t−1])

]
.

and

E[(zi,t − E[zi,t])
2] =

(σ2
e + σ2

ε )σ
2
z V2

(σ2
e + σ2

ε )V2 + σ2
e σ2

ε{σ2
µ[σ

2
x + ρσ2

z (ρ− 1)]2 + σ2
x [σ

2
µ + (1− ρ)σ2

z ]
2} .

Therefore, W is given by:

W =
(σ2

e + σ2
ε )V2

(σ2
e + σ2

ε )V2 + σ2
e σ2

ε{σ2
µ[σ

2
x + ρσ2

z (ρ− 1)]2 + σ2
x [σ

2
µ + (1− ρ)σ2

z ]
2} < 1.

Similarly, E[(xi
1,t − E[xt])2] and E[(µi

1,t − E[µt])]E[(xi
1,t − E[xt])] can be written as:

E[(xi
1,t − E[xt])

2] =
[V + σ2

ε (σ
2
x + ρ2σ2

z )]
2 + ρ2σ2

e σ2
ε σ4

z + ρ2σ2
e (σ

2
ε + σ2

µ)
2Wσ2

z

Ω[Ω− σ2
e (σ

2
ε + σ2

µ + σ2
z )]

VarC = φCVarC,

and

E[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])]

=
σ2

ε [V + σ2
ε (σ

2
x + ρ2σ2

z )] + σ2
e [V + σ2

e (σ
2
z + σ2

µ)] + σ2
e σ2

ε (σ
2
x + σ2

e )(σ
2
ε + σ2

µ)Wσ2
z

Ωσ2
e σ2

ε
C̃OV

= φCOVC̃OV.

Therefore, the forecast variance of Fi,tyt+h across all forecasters can be written as:

Var(Fi,tyt+h) = E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCφC + VarTφT + 2ρhC̃OVφCOV ,

Take the derivative with respect to the forecast horizon h:

∂Var(Fi,tyt+h)

∂h
= 2ρh ln ρ(ρhVarCφC + C̃OVφCOV).

The forecast variance is increasing in h if and only if ∂Var(Fi,tyt+h)/∂h > 0. That is,

h > h =
1

ln ρ
ln
−C̃OVφCOV

VarCφC
.

Proof of proposition 3. Given the beliefs regarding the trend and cyclical components
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specified in Equations (A2) and (A3), the now-cast error in period t is given by:

FEi,t = yt − Fi,tyt

=
ρσ2

e σ2
z + σ2

ε (σ
2
x + σ2

e + ρ2σ2
z )

Ω
γ

µ
t +

ρσ2
ε σ2

z + σ2
e (σ

2
µ + σ2

ε + σ2
z )

Ω
γx

t

−
V + σ2

e [(1− ρ)σ2
z + σ2

µ]

Ω
εi,t −

V + σ2
ε [σ

2
x + (ρ2 − ρ)σ2

z ]

Ω
ei,t

+
ρσ2

e (σ
2
ε + σ2

µ)− σ2
ε (σ

2
e + σ2

x)

Ω
zi,t−1.

Since the state innovations and the signal noises (γµ
t , γx

t , εi,t, ei,t) are independent
across periods, the correlation between the now-cast errors across periods is:

cov(FEi,t−1, FEi,t) =
ρσ2

e (σ
2
ε + σ2

µ)− σ2
ε (σ

2
e + σ2

x)

Ω
cov(FEi,t−1, zi,t−1).

We first examine the correlation between the now-cast error at period t− 1 (i.e., FEi,t−1)
and the separation error at the end of t− 1 (i.e., zi,t−1).

To begin with, we first demonstrate that in the rational case where m1 = m2 = 1,
the covariance between the now-cast error in period t − 1 and the separation error
zi,t−1 is zero. The now-cast error in period t− 1 is given by:

FEi,t−1 = yt−1 − Fi,t−1yt−1

= (µt−1 − µi
1,t−1) + (xt−1 − xi

1,t−1).

The separation error zi,t−1 is given by:

zi,t−1 =
(VarT + C̃OV)(xt−1 − xi

1,t−1)− (VarC + C̃OV)(µt−1 − µi
1,t−1)

VarT + VarC + 2C̃OV
.

Therefore, the covariance is:

cov(FEi,t−1, zi,t−1) =
[(VarT + C̃OV)(C̃OV + VarC)− (VarC + C̃OV)(VarT + C̃OV)]

VarT + VarC + 2C̃OV
= 0.

Therefore, when m1 = m2 = 1, the now-cast error in the period t− 1 is independent
with the separation error zi,t−1. Consequently, the now-cast errors across periods t− 1
and t would also be zero.

When forecasters are overconfident in the trend signal, i.e., m1 < 1, m2 = 1. The
posterior beliefs regarding the two components after observing the new signals can be
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written as:

µT
1,t,o =

m1σ2
ε (ρ

2σ2
z,o + σ2

x + σ2
e )

Ω1
µi

2,t−1,o +
V1 + σ2

e (σ
2
z,o + σ2

µ)

Ω1
sµ

i,t−
ρm1σ2

ε σ2
z,o

Ω1
(sx

i,t− ρxi
2,t−1,o),

(A13)

xT
1,t,o =

σ2
e (σ

2
z,o + σ2

µ + m1σ2
ε )

Ω1
ρxi

2,t−1,o +
V1 + m1σ2

ε (σ
2
x + ρ2σ2

z,o)

Ω1
sx

i,t−
ρσ2

e σ2
z,o

Ω1
(sµ

i,t−µi
2,t−1,o),

(A14)
where Ω1 and V1 are constants:

Ω1 = (σ2
z,o +σ2

µ +m1σ2
ε )(σ

2
x +σ2

e + ρ2σ2
z,o)− ρ2σ4

z,o, V1 = (σ2
z,o +σ2

µ)(σ
2
x + ρ2σ2

z,o)− ρ2σ4
z,o.

The term σ2
z,o is the perceived variance of the separation error in the steady state in this

case. The variance-covariance matrix regarding the beliefs of the trend and cyclical
components is:

(
VarT

1 C̃OV1

C̃OV1 VarC
1

)
=

 m1σ2
ε [Ω1−m1σ2

ε (σ
2
x+σ2

e +ρ2σ2
z,o)]

Ω1
− ρσ2

e m1σ2
ε σ2

z,o
Ω1

− ρσ2
e m1σ2

ε σ2
z,o

Ω1

σ2
e [Ω1−σ2

e (m1σ2
ε+σ2

µ+σ2
z,o)]

Ω1

 .

(A15)
Importantly, the perceived variances of both the trend and cyclical components, as
well as their covariance (in magnitude), are lower:

VarT
a = VarT

1 + (1−m1)σ
2
ε (

V1 + σ2
e (σ

2
z,o + σ2

µ)

Ω1
)2 + (

m1σ2
ε (σ

2
x + σ2

e )

Ω1
)2(σ2

z,a − σ2
z,o),

(A16)

VarC
a = VarC

1 + (1−m1)σ
2
ε (

ρσ2
e σ2

z,o

Ω1
)2 + (

ρσ2
e (σ

2
µ + m1σ2

ε )

Ω1
)2(σ2

z,a − σ2
z,o), (A17)

C̃OVa = C̃OV1 − (1−m1)σ
2
ε

ρσ2
e σ2

z,o

Ωo

V1 + σ2
e (σ

2
z,o + σ2

µ)

Ω1
(A18)

− m1σ2
ε (σ

2
x + σ2

e )

Ω1

ρσ2
e (σ

2
µ + m1σ2

ε )

Ω1
(σ2

z,a − σ2
z,o).

The subscript a stands for the actual variance and covariance term when forecasters
are overconfident in the trend signal. σ2

z,a is the actual variance of the separation error:

σ2
z,a − σ2

z,o = GT(1−m1)σ
2
ε (

σ2
e V1

Ω1
)2 > 0,
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where GT is given by:

GT =
Ω2

1

[Ω1(VarT
1 + VarC

1 + 2C̃OV1)]2 − [m1σ2
e σ2

ε (ρσ2
µ + σ2

x)]
2
> 0.

At the end of period t− 1, when the actual state value yt−1 is observed by all the fore-
casters, they will revise their beliefs using the perceived variance-covariance matrix.
The separation error zi,t−1 in this case can be written as:

zi,t−1,o =
(VarT

1 + C̃OV1)(xt−1 − xT
1,t−1,o)− (VarC

1 + C̃OV1)(µt−1 − µT
1,t−1,o)

VarT
1 + VarC

1 + 2C̃OV1
.

The covariance between FEi,t−1 and zi,t−1,o is given by:

cov(FEi,t−1, zi,t−1,o) (A19)

= (VarT
1 + C̃OV1)(VarC

a + C̃OVa)− (VarC
1 + C̃OV1)(VarT

a + C̃OVa)

= (VarT
1 + C̃OV1)(VarC

a −VarC
1 + C̃OVa − C̃OV1)

− (VarC
1 + C̃OV1)(VarT

a −VarT
1 + C̃OVa − C̃OV1).

The second equality in Equation (A19) holds because we subtract the following term
to the right-hand-side:

(VarT
1 + C̃OV1)(VarC

1 + C̃OV1)− (VarC
1 + C̃OV1)(VarT

1 + C̃OV1) = 0. (A20)

This term is zero because it is the perceived covariance FEi,t−1 and zi,t−1. Using Equa-
tions (A16) to (A19), we have:

cov(FEi,t−1, zi,t−1,o) = −(1−m1)σ
2
ε φT

over
σ2

e V1

Ω1
, (A21)

where

φT
over =

1
Ω3

1
[(1− ρ)σ2

e (σ
2
µ + σ2

z,o + m1σ2
ε ) + V1 + m1σ2

ε σ2
x ][m1σ4

e σ2
ε Vo(ρσ2

µ + σ2
x)]G

T

+
V1 + σ2

e [σ
2
µ + (1− ρ)σ2

z,o]

Ω1
[1− GT

Ω2
1

m1σ4
e σ2

ε V1(ρσ2
µ + σ2

x)] > 0.

Therefore, when forecasters exhibit overconfidence in the trend signal, there is always
a negative correlation between the now-cast error FEi,t−1 and the separation error
zi,t−1,o. Consequently, the covariance between the now-cast errors across periods can
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be expressed as:

cov(FEi,t−1, FEi,t) =
ρσ2

e (m1σ2
ε + σ2

µ)−m1σ2
ε (σ

2
e + σ2

x)

Ω1
cov(FEi,t−1, zi,t−1)︸ ︷︷ ︸

(−)

.

The condition for a positive correlation between the now-cast errors across periods
then in given by:

ρσ2
e (m1σ2

ε + σ2
µ)−m1σ2

ε (σ
2
e + σ2

x)

Ω1
< 0,

which is equivalent to
ρσ2

µσ2
e

σ2
ε [(1− ρ)σ2

e + σ2
x ]

< m1 < 1.

Following the same logic, when forecasters are overconfident in the cyclical signal, the
variance-covariance matrix of regarding the beliefs of the trend and cyclical compo-
nents is:(

VarT
2 C̃OV2

C̃OV2 VarC
2

)
=

 σ2
ε [Ω2−σ2

ε (σ
2
x+m2σ2

e +ρ2σ2
z,o)]

Ω2
− ρm2σ2

e σ2
ε σ2

z,o
Ω2

− ρm2σ2
e σ2

ε σ2
z,o

Ω2

m2σ2
e [Ω2−m2σ2

e (σ
2
ε+σ2

µ+σ2
z,o)]

Ω2

 .

(A22)
The covariance between the now-cast error at t− 1 and the separation error zi,t−1,o is
given by:

cov(FEi,t−1, zi,t−1,o) = (1−m2)σ
2
e φC

over
σ2

ε V2

Ω2
, (A23)

where Ω2 and V2 are counterparts of Ω1 and V1:

Ω2 = (σ2
z,o +σ2

µ +σ2
ε )(σ

2
x +m2σ2

e + ρ2σ2
z,o)− ρ2σ4

z,o, V2 = (σ2
z,o +σ2

µ)(σ
2
x + ρ2σ2

z,o)− ρ2σ4
z,o.

and

φC
over =

σ2
ε [σ

2
x − ρ(1− ρ)σ2

z,o] + V2

Ω2
[1− ρGC m2σ4

ε σ2
e V2(σ

2
µ + σ2

x)

Ω2
2

]

+
1

Ω3
2
[V2 + m1σ2

e (σ
2
µ + (1− ρ)σ2

z )][m2σ4
ε σ2

e V2(σ
2
µ + σ2

x)]G
C > 0.

GC is the counterpart of GT:

GC =
Ω2

2

[Ω2(VarT
2 + VarC

2 + 2C̃OV2)]2 − [m2σ2
e σ2

ε (ρσ2
µ + σ2

x)]
2
> 0.

Equation (A23) shows that when forecasters are overconfident in the cyclical signal,
the correlation between the now-cast error at t − 1 and the separation error zi,t−1,o
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would be positive. The covariance between the now-cast errors across periods is given
by:

cov(FEi,t−1, FEi,t) =
ρm2σ2

e (σ
2
ε + σ2

µ)− σ2
ε (m2σ2

e + σ2
x)

Ω2
cov(FEi,t−1, zi,t−1)︸ ︷︷ ︸

(+)

.

Thus, the now-cast errors are positively correlated across periods if and only if:

1 <
1

m2
<

1
m2

=
σ2

e [ρσ2
µ − (1− ρ)σ2

ε ]

σ2
ε σ2

x
.

Proof of proposition 4. For those who correctly use the signals, their expectations
regarding the two components are:

Ec
i,t[µt] =

σ2
µsµ

i,t + σ2
ε µt−1

σ2
µ + σ2

ε
and Ec

i,t[xt] =
σ2

x sx
i,t + σ2

e ρxt−1

σ2
x + σ2

e
.

The average beliefs regarding the two components of the group who correctly interpret
the signals are:

EC[µt] = µt −
σ2

ε

σ2
µ + σ2

ε
γ

µ
t , and EC[xt] = xt −

σ2
e

σ2
x + σ2

e
γx

t .

For those who wrongly interpret the signals, their expectations regarding the two com-
ponents are:

EW
i,t [µt] =

σ2
µsx

i,t + σ2
ε µt−1

σ2
µ + σ2

ε
and EW

i,t [xt] =
σ2

x sµ
i,t + σ2

e ρxt−1

σ2
x + σ2

e
.

The average beliefs regarding the two components of the group who wrongly interpret
the signals are:

EW [µt] =
σ2

µxt + σ2
ε µt−1

σ2
µ + σ2

ε
, and EW [xt] =

σ2
x µt + σ2

e ρxt−1

σ2
x + σ2

e
.

The forecast variance across all forecasters then is given by:

Var(Fi,tyt+h) = Var(µi
1,t) + ρ2hVar(xi

1,t) + ρhE[(µi
1,t − E[µt])(xi

1,t − E[xt])]

= ρ2h[τφC
wVarC

w + (1− τ)φC
c VarC

c ] + [τφT
wVarT

w + (1− τ)φT
c VarT

c ]

+ ρh(1− τ)τC̃OVm,
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where φC
w, φC

c , φT
w, and φT

c are positive scalars between 0 and 1:

φC
w =

σ2
x σ2

ε

σ4
e + σ2

x σ2
ε

; φC
c =

σ2
x

σ2
e + σ2

x
;

φT
w =

σ2
µσ2

e

σ4
ε + σ2

µσ2
e

; φT
c =

σ2
µ

σ2
µ + σ2

ε
.

The first-order derivative of the Var(Fi,tyt+h) regarding the forecast horizon h is:

∂Var(Fi,tyt+h)

∂h
= 2ρ2h ln ρ

[
τφC

wVarC
w + (1− τ)φC

c VarC
c

]
+ (1− τ)τρh ln ρC̃OVm.

The forecast variance is increasing in h, if and only if:

h > hm =
1

ln ρ
ln (−τ(1− τ))

C̃OVm

2[τφC
wVarC

w + (1− τ)φC
c VarC

c ]
.
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C Supplemental material: Overconfident in cyclical signal

When forecasters are overconfident in the cyclical signal, they perceive the variance of
the cyclical component to be smaller than it actually is. Consequently, the error term in
the cyclical belief is assigned an excessive weight compared to the Bayesian scenario.
As a result, it drives the correlation between the separating error (zi,t−1) and the now-
cast error for the previous period (FEi,t−1) to become positive. Specifically, we show
that the covariance is given by:

cov(zi,t−1, FEi,t−1) = (1−m2)σeφ
C
O

σ2
ε V2

Ω2
> 0,

where φC
O is a positive scalar shown in the proof of Appendix 4.

Similar to the case in the main text, when forecasters are overconfident in the cycli-
cal signal, the covariance between the separation error and the now-cast error of the
current period can also be decomposed into two parts:

cov(zi,t−1, FEi,t) =
σ2

z
Ω2

[−σ2
ε (σ

2
x + m2σ2

e )︸ ︷︷ ︸
trend prior e f f ect

+ ρm2σ2
e (σ

2
µ + σ2

ε )︸ ︷︷ ︸
cyclical prior e f f ect

]. (C24)

When forecasters are overconfident in the cyclical signal, they tend to place greater
reliance on the cyclical signal and less on the prior belief inherited from the last pe-
riod. Therefore, as the extent of overconfidence in the cyclical signal increases (i.e.,
m2 becomes smaller), the effect of the cyclical prior is more likely to be dominated,
and the covariance between the separation error (zi,t−1) and the current now-cast er-
ror (FEi,t) is more likely to be negative. Consider a polar case where m2 goes to zero,
the correlation is strictly negative.

Part (ii) of Proposition 3 states that when both the confusion and overconfidence
mechanisms are present, the now-cast errors across periods can be positively corre-
lated if the extent of overconfidence in the cyclical signal is moderate. The inequality
in Equation (18) characterizes the condition under which the effect of the cyclical prior
dominates the effect of the trend prior. Consider the case when the trend component is
very volatile (i.e., σ2

µ is large enough). Forecasters would place limited reliance on the
trend prior and rely heavily on the signal regarding the trend component. Therefore,
the effect of the trend prior is always dominated, resulting in a positive correlation be-
tween the separation error and the now-cast error of the current period. Consequently,
the covariance between the now-cast errors across periods is positive for any m2 < 1.
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